ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Bexarotene (systemic): Drug information

Bexarotene (systemic): Drug information
(For additional information see "Bexarotene (systemic): Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
ALERT: US Boxed Warning
Pregnancy:

Bexarotene (oral) is a member of the retinoid class of drugs that is associated with birth defects in humans. Bexarotene (oral) also caused birth defects when administered orally to pregnant rats. Bexarotene (oral) must not be administered to a pregnant woman.

Brand Names: US
  • Targretin
Pharmacologic Category
  • Antineoplastic Agent, Retinoic Acid Derivative
Dosing: Adult
Cutaneous T-cell lymphoma, refractory

Cutaneous T-cell lymphoma, refractory: Oral: Initial: 300 mg/m2 once daily taken as a single daily dose; if well tolerated, but no tumor response after 8 weeks, may increase to 400 mg/m2 once daily (Duvic 2001); continue as long as clinical benefit is demonstrated (bexarotene was administered in studies for up to 97 weeks).

Consensus recommendations (off-label dosing): Initial: 150 mg/m2 once daily; if lab work remains stable for at least 4 weeks, increase to 300 mg/m2/day. In patients with unstable lipids or other bexarotene toxicities, may increase in 75 mg/day increments every 2 to 4 weeks up to 300 mg/m2/day. Reduce dose in 75 mg/day decrements for toxicity. Continue until disease progression or unacceptable toxicity. Response may take up to 6 months; loss of response may require dose escalation or adjuvant therapy (Scarisbrick 2013). Refer to consensus recommendations for further details.

Cutaneous anaplastic large cell lymphoma (off-label dosing): Target dose (in patients who are unable to tolerate or are refractory to methotrexate): 300 mg/m2/day for up to 48 weeks or until disease progression or unacceptable toxicity (Prince 2017).

Mycosis fungoides/Sezary syndrome, refractory/resistant (off-label dosing): Induction: 150 mg/day for 1 to 2 months or 225 or 300 mg/day for 1 month, followed by maintenance therapy of 150 to 300 mg/day for 11 months. Bexarotene is administered in combination with varying schedules of PUVA; refer to protocol for further bexarotene and PUVA dosing details (Rupoli 2016).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

There are no dosage adjustments provided in the manufacturer's labeling (has not been studied); however, although renal elimination is a minor excretion pathway, renal insufficiency may result in significant protein binding changes and alter pharmacokinetics of bexarotene.

Dosing: Hepatic Impairment: Adult

Hepatic impairment at baseline: There are no dosage adjustments provided in the manufacturer's labeling (has not been studied); however, hepatic impairment would be expected to result in decreased clearance of bexarotene due to the extensive hepatic contribution to elimination.

Hepatotoxicity during treatment: If AST, ALT, or bilirubin >3 times ULN, consider withholding or discontinuing therapy.

Dosing: Obesity: Adult

American Society of Clinical Oncology guidelines for appropriate systemic therapy dosing in adults with cancer with a BMI ≥30 kg/m2 : Utilize patient's actual body weight (full weight) for calculation of BSA- or weight-based dosing; manage regimen-related toxicities in the same manner as for patients with a BMI <30 kg/m2; if a dose reduction is utilized due to toxicity, may consider resumption of full weight-based dosing (or previously tolerated dose level) with subsequent cycles only if dose escalations are allowed in the prescribing information, if contributing underlying factors (eg, hepatic or kidney impairment) are sufficiently resolved, AND if performance status has markedly improved or is considered adequate (ASCO [Griggs 2021]).

Dosing: Adjustment for Toxicity: Adult

If necessitated by toxicity, may decrease dose from 300 mg/m2/day to 200 mg/m2/day, then to 100 mg/m2/day, or temporarily hold. Upon recovery, may titrate dose upward with careful monitoring.

Hypertriglyceridemia: Consider dose reduction, treatment interruption, and or antilipemic therapy.

Leukopenia and neutropenia: Leukopenia and neutropenia resolved after dose reduction or discontinuation.

Dosing: Older Adult

Refer to adult dosing.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified.

Frequency not always defined.

>10%:

Cardiovascular: Peripheral edema (11% to 13%)

Central nervous system: Headache (30% to 42%), chills (10% to 13%), insomnia (5% to 11%)

Dermatologic: Exfoliative dermatitis (10% to 28%), skin rash (17% to 23%), xeroderma (9% to 11%), alopecia (4% to 11%)

Endocrine & metabolic: Hyperlipidemia (79%), hypercholesterolemia (32% to 62%), hypothyroidism (29% to 53%), increased lactate dehydrogenase (7% to 13%)

Gastrointestinal: Diarrhea (7% to 42%), anorexia (2% to 23%), nausea (8% to 16%), vomiting (4% to 13%), abdominal pain (4% to 11%)

Hematologic & oncologic: Leukopenia (17% to 47%), anemia (6% to 25%), hypochromic anemia (4% to 13%)

Infection: Infection (13% to 23%; bacterial infection: 1% to 13%)

Neuromuscular & skeletal: Weakness (20% to 45%), back pain (2% to 11%)

Respiratory: Flu-like symptoms (4% to 13%)

Miscellaneous: Fever (5% to 17%)

1% to 10%:

Cardiovascular: Angina pectoris, cardiac failure (right), cerebrovascular accident, chest pain, hypertension, subdural hematoma, syncope, tachycardia

Central nervous system: Agitation, ataxia, confusion, depression, dizziness, hyperesthesia, myasthenia, neuropathy

Dermatologic: Acne vulgaris, allergic skin reaction, cellulitis, cheilitis, cutaneous nodule, maculopapular rash, skin photosensitivity, pustular rash, skin rash, sunburn, vesiculobullous dermatitis

Endocrine & metabolic: Albuminuria, hyperglycemia, weight gain, weight loss

Gastrointestinal: Colitis, constipation, dyspepsia, flatulence, gastroenteritis, gingivitis, increased serum amylase, melena, pancreatitis, xerostomia

Genitourinary: Dysuria, hematuria, mastalgia, urinary incontinence, urinary tract infection, urinary urgency

Hematologic & oncologic: Acquired blood coagulation disorder, eosinophilia, hemorrhage, hypoproteinemia, lymphocytosis, thrombocythemia, thrombocytopenia

Hepatic: Hepatic failure, increased serum ALT, increased serum AST, increased serum bilirubin

Infection: Candidiasis, sepsis

Neuromuscular & skeletal: Arthralgia, arthrosis, myalgia, ostealgia

Ophthalmic: Blepharitis, cataract (new and worsening), conjunctivitis, corneal lesion, keratitis, visual field defect, xerophthalmia

Otic: Otalgia, otitis externa

Renal: Increased serum creatinine, renal function abnormality

Respiratory: Bronchitis, cough, dyspnea, hemoptysis, hypoxia, pharyngitis, pleural effusion, pneumonia, pulmonary edema, rhinitis

Miscellaneous: Serous drainage

Contraindications

Known serious hypersensitivity to bexarotene or any component of the formulation; pregnancy.

Warnings/Precautions

Concerns related to adverse effects:

• Hepatotoxicity: Dose-related elevations in ALT, AST, and bilirubin have been reported; cases of cholestasis and liver failure (fatal) have occurred. Monitor for liver function test abnormalities and temporarily withhold or discontinue if ALT, AST, or bilirubin are >3 times the ULN. Liver function test elevations resolved within 1 month in most patients following dose reduction or discontinuation.

• Hypothyroidism: Bexarotene is associated with a rapid and profound suppression of thyrotropin, which may commonly lead to hypothyroidism (Burch 2019). Bexarotene rapidly suppresses thyroid-stimulating hormone (TSH) levels by directly inhibiting TSH secretion, and also affects thyroid hormone metabolism (Hamnvik 2011). Reductions in total T4 and TSH are reversible. Hypothyroidism commonly occurs. Monitor thyroid functions tests, including free T4 levels at baseline and during treatment. Levothyroxine therapy should be initiated when oral bexarotene is initiated (use low-dose levothyroxine in patients with cardiovascular disease [CVD]); patients already receiving thyroid hormone therapy may require increased thyroid hormone doses to achieve therapeutic levels (Hamnvik 2011; Scarisbrick 2013). Withhold levothyroxine if bexarotene is withheld; if bexarotene is permanently discontinued, stop levothyroxine (or revert back to doses used prior to bexarotene therapy) (Scarisbrick 2013). Recovery of thyroid function generally occurs within weeks of bexarotene discontinuation (Burch 2019).

• Leukopenia: Grade 1 to 3 leukopenia has occurred (predominantly as neutropenia); the incidence is higher with doses >300 mg/m2/day. The onset of leukopenia was generally 4 to 8 weeks. Grade 3 and 4 neutropenia have occurred. Leukopenia and neutropenia typically resolved within 30 days after discontinuation or dose reduction. Monitor CBC with differential at baseline and periodically during treatment. Leukopenia and neutropenia were rarely associated with severe conditions or serious adverse events.

• Lipid abnormalities: Bexarotene induces significant lipid abnormalities in a majority of patients (increased triglycerides and total cholesterol as well as decreased high-density lipoprotein cholesterol); the onset is usually within 2 to 4 weeks; effects are reversible on discontinuation or generally mitigated by dose reduction and/or antilipemic therapy. Initiate low-fat diet (<30% of calories from fat with saturated fats <10%) (Scarisbrick 2013). Monitor fasting lipid panel; may require dose reduction, treatment interruption, and/or concomitant antilipemic therapy. Fasting triglycerides should be normal (or normalized with appropriate therapy) prior to initiation; triglycerides should be maintained <400 mg/dL. Optimize lipids prior to bexarotene initiation in patients with preexisting CVD, type 2 diabetes, or a CVD risk >20%; otherwise, initiate lipid-lowering therapy with an appropriate agent that does not have potential drug interactions (Scarisbrick 2013). In studies, HMG-CoA reductase inhibitors were used to manage lipids; gemfibrozil is not recommended due to potential for drug interactions. If bexarotene therapy is withheld, lipid-lowering therapy may be continued; if bexarotene is permanently discontinued, discontinue lipid-lowering therapy or revert back to lipid-lowering therapy doses used prior to bexarotene therapy (Scarisbrick 2013).

• Pancreatitis: Pancreatitis (acute) associated with hypertriglyceridemia has been reported. Interrupt treatment and evaluate if pancreatitis is suspected. Cutaneous T-cell lymphoma patients with risk factors for pancreatitis (eg, prior pancreatitis, uncontrolled hyperlipidemia, excessive ethanol consumption, uncontrolled diabetes, biliary tract disease, concomitant medications causing hyperlipidemia or concomitant medications associated with pancreatic toxicity) may be at increased risk for bexarotene-associated pancreatitis.

• Photosensitivity: Retinoids are associated with photosensitivity; phototoxicity (sunburn, sunlight sensitivity) has occurred with bexarotene when patients were exposed to direct sunlight. Advise patients to minimize exposure to sunlight and artificial ultraviolet light during treatment. The use of a high-factor sunscreen is recommended (Scarisbrick 2013).

• Visual disturbances: Any new visual abnormalities experienced by the patient should be evaluated by an ophthalmologist (cataracts may develop or worsen, especially in the geriatric population).

Disease-related concerns:

• Diabetes: Use with caution in patients with diabetes mellitus; may enhance the actions of insulin, sulfonylureas, or thiazolidinediones, resulting in hypoglycemia in patients receiving these agents (hypoglycemia has not been observed with bexarotene monotherapy). Monitor blood glucose as necessary.

• Hepatic impairment: Use with extreme caution in patients with hepatic impairment; bexarotene undergoes extensive hepatic elimination.

Concurrent drug therapy issues:

• Vitamin A: Due to the potential for additive toxicities, patients should be advised to limit additional vitamin A intake (in studies, additional vitamin A was limited to ≤15,000 units/day). Consider avoiding vitamin A supplementation (Scarisbrick 2013).

Special populations:

• Pregnancy: [US Boxed Warning]: Bexarotene is a retinoid, a drug class associated with birth defects in humans; do not administer during pregnancy. Bexarotene caused birth defects when administered orally to pregnant rats.

Dosage form specific issues:

• Propylene glycol: Some dosage forms may contain propylene glycol; large amounts are potentially toxic and have been associated with hyperosmolality, lactic acidosis, seizures, and respiratory depression; use caution (AAP 1997; Zar 2007). See manufacturer's labeling.

Other warnings/precautions:

• Lifestyle modifications: Limit alcohol to <14 units/week (females) or <21 units/week (males) and consider exercise (Scarisbrick 2013).

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Capsule, Oral:

Targretin: 75 mg

Generic: 75 mg

Generic Equivalent Available: US

Yes

Pricing: US

Capsules (Bexarotene Oral)

75 mg (per each): $70.62 - $283.57

Capsules (Targretin Oral)

75 mg (per each): $298.50

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Administration: Adult

Oral: Administer with a meal.

Hazardous Drugs Handling Considerations

Hazardous agent (NIOSH 2016 [group 1]).

Use appropriate precautions for receiving, handling, storage, preparation, dispensing, transporting, administration, and disposal. Follow NIOSH and USP 800 recommendations and institution-specific policies/procedures for appropriate containment strategy (NIOSH 2016; USP-NF 2020).

Use: Labeled Indications

Cutaneous T-cell lymphoma, refractory: Treatment of cutaneous manifestations of cutaneous T-cell lymphoma in patients who are refractory to at least one prior systemic therapy

Medication Safety Issues
Sound-alike/look-alike issues:

Bexarotene may be confused with Bexsero, Bextra.

Targretin may be confused with Tagrisso, Tarceva, Targin.

High alert medication:

This medication is in a class the Institute for Safe Medication Practices (ISMP) includes among its list of drug classes which have a heightened risk of causing significant patient harm when used in error.

Metabolism/Transport Effects

Substrate of CYP3A4 (minor); Note: Assignment of Major/Minor substrate status based on clinically relevant drug interaction potential; Induces CYP3A4 (moderate)

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

5-Aminosalicylic Acid Derivatives: May enhance the myelosuppressive effect of Myelosuppressive Agents. Risk C: Monitor therapy

Abemaciclib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Abemaciclib. Risk X: Avoid combination

Abiraterone Acetate: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Abiraterone Acetate. Risk C: Monitor therapy

Acalabrutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Acalabrutinib. Risk C: Monitor therapy

ALfentanil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of ALfentanil. Management: If concomitant use of alfentanil and moderate CYP3A4 inducers is necessary, consider dosage increase of alfentanil until stable drug effects are achieved. Monitor patients for signs of opioid withdrawal. Risk D: Consider therapy modification

ALPRAZolam: CYP3A4 Inducers (Moderate) may decrease the serum concentration of ALPRAZolam. Risk C: Monitor therapy

Aminolevulinic Acid (Systemic): Photosensitizing Agents may enhance the photosensitizing effect of Aminolevulinic Acid (Systemic). Risk X: Avoid combination

Aminolevulinic Acid (Topical): Photosensitizing Agents may enhance the photosensitizing effect of Aminolevulinic Acid (Topical). Risk C: Monitor therapy

AmLODIPine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of AmLODIPine. Risk C: Monitor therapy

Antihepaciviral Combination Products: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Antihepaciviral Combination Products. Risk X: Avoid combination

Apremilast: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Apremilast. Risk C: Monitor therapy

Aprepitant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Aprepitant. Risk C: Monitor therapy

ARIPiprazole: CYP3A4 Inducers (Moderate) may decrease the serum concentration of ARIPiprazole. Risk C: Monitor therapy

ARIPiprazole Lauroxil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of ARIPiprazole Lauroxil. Risk C: Monitor therapy

Artemether and Lumefantrine: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Artemether and Lumefantrine. Specifically, concentrations of dihydroartemisinin (DHA), the active metabolite of artemether may be decreased. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Artemether and Lumefantrine. Risk C: Monitor therapy

Asunaprevir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Asunaprevir. Risk X: Avoid combination

Atazanavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Atazanavir. Risk C: Monitor therapy

Atogepant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Atogepant. Management: For treatment of episodic migraine, the recommended dose of atogepant is 30 mg once daily or 60 mg once daily when combined with CYP3A4 inducers. When used for treatment of chronic migraine, use of atogepant with CYP3A4 inducers should be avoided. Risk D: Consider therapy modification

Atorvastatin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Atorvastatin. Risk C: Monitor therapy

Avacopan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Avacopan. Risk X: Avoid combination

Avanafil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Avanafil. Risk X: Avoid combination

Avapritinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Avapritinib. Risk X: Avoid combination

Axitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Axitinib. Risk X: Avoid combination

BCG (Intravesical): Myelosuppressive Agents may diminish the therapeutic effect of BCG (Intravesical). Risk X: Avoid combination

Bedaquiline: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Bedaquiline. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Bedaquiline. Risk X: Avoid combination

Belumosudil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Belumosudil. Risk C: Monitor therapy

Benzhydrocodone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Risk C: Monitor therapy

Bortezomib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Bortezomib. Risk C: Monitor therapy

Bosutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Bosutinib. Risk C: Monitor therapy

Brexpiprazole: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Brexpiprazole. Risk C: Monitor therapy

Brigatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Brigatinib. Management: Avoid concurrent use of brigatinib with moderate CYP3A4 inducers when possible. If combined, increase the daily dose of brigatinib in 30 mg increments after 7 days of treatment with the current brigatinib dose, up to maximum of twice the dose. Risk D: Consider therapy modification

Buprenorphine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Buprenorphine. Risk C: Monitor therapy

BusPIRone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of BusPIRone. Risk C: Monitor therapy

Cabozantinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Cabozantinib. Risk C: Monitor therapy

Cannabis: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Cannabis. More specifically, tetrahydrocannabinol and cannabidiol serum concentrations may be decreased. Risk C: Monitor therapy

Capivasertib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Capivasertib. Risk X: Avoid combination

Capmatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Capmatinib. Risk X: Avoid combination

CarBAMazepine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of CarBAMazepine. Risk C: Monitor therapy

CARBOplatin: May increase the serum concentration of Bexarotene (Systemic). Risk C: Monitor therapy

Cariprazine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Cariprazine. Risk X: Avoid combination

Ceritinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ceritinib. Risk C: Monitor therapy

Chloramphenicol (Ophthalmic): May enhance the adverse/toxic effect of Myelosuppressive Agents. Risk C: Monitor therapy

Chloramphenicol (Systemic): Myelosuppressive Agents may enhance the myelosuppressive effect of Chloramphenicol (Systemic). Risk X: Avoid combination

Cladribine: May enhance the myelosuppressive effect of Myelosuppressive Agents. Risk X: Avoid combination

Clarithromycin: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Clarithromycin. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Clarithromycin. Management: Consider alternative antimicrobial therapy for patients receiving a CYP3A4 inducer. Drugs that enhance the metabolism of clarithromycin into 14-hydroxyclarithromycin may alter the clinical activity of clarithromycin and impair its efficacy. Risk D: Consider therapy modification

Clindamycin (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Clindamycin (Systemic). Risk C: Monitor therapy

CloZAPine: Myelosuppressive Agents may enhance the adverse/toxic effect of CloZAPine. Specifically, the risk for neutropenia may be increased. Risk C: Monitor therapy

CloZAPine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of CloZAPine. Risk C: Monitor therapy

Cobicistat: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Cobicistat. Risk C: Monitor therapy

Cobimetinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Cobimetinib. Risk X: Avoid combination

Codeine: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Codeine. Risk C: Monitor therapy

Copanlisib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Copanlisib. Risk C: Monitor therapy

Crizotinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Crizotinib. Risk C: Monitor therapy

CycloSPORINE (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of CycloSPORINE (Systemic). Risk C: Monitor therapy

Daclatasvir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Daclatasvir. Management: Increase the daclatasvir dose to 90 mg once daily if used with a moderate CYP3A4 inducer. Risk D: Consider therapy modification

Dapsone (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Dapsone (Systemic). Risk C: Monitor therapy

Daridorexant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Daridorexant. Risk X: Avoid combination

Dasabuvir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Dasabuvir. Risk X: Avoid combination

Dasatinib: CYP3A4 Inducers (Moderate) may increase the serum concentration of Dasatinib. Risk C: Monitor therapy

Deferiprone: Myelosuppressive Agents may enhance the neutropenic effect of Deferiprone. Management: Avoid the concomitant use of deferiprone and myelosuppressive agents whenever possible. If this combination cannot be avoided, monitor the absolute neutrophil count more closely. Risk D: Consider therapy modification

Deflazacort: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Deflazacort. Risk X: Avoid combination

Delavirdine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Delavirdine. Risk C: Monitor therapy

DexAMETHasone (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of DexAMETHasone (Systemic). Risk C: Monitor therapy

DiazePAM: CYP3A4 Inducers (Moderate) may decrease the serum concentration of DiazePAM. Risk C: Monitor therapy

Dienogest: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Dienogest. Risk C: Monitor therapy

DilTIAZem: CYP3A4 Inducers (Moderate) may decrease the serum concentration of DilTIAZem. Risk C: Monitor therapy

Dipyrone: May enhance the adverse/toxic effect of Myelosuppressive Agents. Specifically, the risk for agranulocytosis and pancytopenia may be increased Risk X: Avoid combination

Disopyramide: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Disopyramide. Risk C: Monitor therapy

Doravirine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Doravirine. Risk C: Monitor therapy

DOXOrubicin (Conventional): CYP3A4 Inducers (Moderate) may decrease the serum concentration of DOXOrubicin (Conventional). Risk X: Avoid combination

DroNABinol: CYP3A4 Inducers (Moderate) may decrease the serum concentration of DroNABinol. Risk C: Monitor therapy

Dronedarone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Dronedarone. Risk C: Monitor therapy

Duvelisib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Duvelisib. Management: Avoid if possible. If used, on day 12 of combination increase duvelisib from 25 mg twice daily to 40 mg twice daily or from 15 mg twice daily to 25 mg twice daily. Resume prior duvelisib dose 14 days after stopping moderate CYP3A4 inducer. Risk D: Consider therapy modification

Dydrogesterone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Dydrogesterone. Risk C: Monitor therapy

Efavirenz: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Efavirenz. Risk C: Monitor therapy

Elacestrant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Elacestrant. Risk X: Avoid combination

Elbasvir and Grazoprevir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Elbasvir and Grazoprevir. Risk X: Avoid combination

Elexacaftor, Tezacaftor, and Ivacaftor: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Elexacaftor, Tezacaftor, and Ivacaftor. Risk C: Monitor therapy

Eliglustat: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Eliglustat. Risk C: Monitor therapy

Elvitegravir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Elvitegravir. Risk C: Monitor therapy

Encorafenib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Encorafenib. Risk C: Monitor therapy

Entrectinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Entrectinib. Risk X: Avoid combination

Enzalutamide: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Enzalutamide. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Enzalutamide. Risk C: Monitor therapy

Erdafitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Erdafitinib. Management: Dose modifications of erdafitinib may be required. See full monograph for details. Risk D: Consider therapy modification

Erlotinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Erlotinib. Risk C: Monitor therapy

Estrogen Derivatives: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Estrogen Derivatives. Risk C: Monitor therapy

Etoposide: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Etoposide. Risk C: Monitor therapy

Etoposide Phosphate: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Etoposide Phosphate. Risk C: Monitor therapy

Etravirine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Etravirine. Risk C: Monitor therapy

Everolimus: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Everolimus. Risk C: Monitor therapy

Exemestane: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Exemestane. Risk C: Monitor therapy

Fedratinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Fedratinib. Risk X: Avoid combination

Felodipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Felodipine. Risk C: Monitor therapy

FentaNYL: CYP3A4 Inducers (Moderate) may decrease the serum concentration of FentaNYL. Risk C: Monitor therapy

Fexinidazole: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Fexinidazole. Risk X: Avoid combination

Fexinidazole: Myelosuppressive Agents may enhance the myelosuppressive effect of Fexinidazole. Risk X: Avoid combination

Finerenone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Finerenone. Risk X: Avoid combination

Flibanserin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Flibanserin. Risk X: Avoid combination

Fosamprenavir: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Fosamprenavir. Risk C: Monitor therapy

Fosaprepitant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Fosaprepitant. Specifically, CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite aprepitant. Risk C: Monitor therapy

Fosnetupitant: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Fosnetupitant. Risk C: Monitor therapy

Fostamatinib: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Fostamatinib. Risk C: Monitor therapy

Fruquintinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Fruquintinib. Management: Avoid this combination when possible. If combined, continue the same fruquintinib dose, but monitor for reduced fruquintinib efficacy. Risk D: Consider therapy modification

Ganaxolone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ganaxolone. Management: Avoid concomitant use of ganaxolone and moderate CYP3A4 inducers whenever possible. If combined, consider increasing the dose of ganaxolone, but do not exceed the maximum recommended daily dose. Risk D: Consider therapy modification

Gefitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Gefitinib. Risk C: Monitor therapy

Gemfibrozil: May increase the serum concentration of Bexarotene (Systemic). Risk X: Avoid combination

Gemigliptin: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Gemigliptin. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Gemigliptin. Risk C: Monitor therapy

Gepirone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Gepirone. Risk C: Monitor therapy

Glasdegib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Glasdegib. Management: Avoid use of glasdegib and moderate CYP3A4 inducers whenever possible. If combined, increase glasdegib dose from 100 mg daily to 200 mg daily or from 50 mg daily to 100 mg daily. Resume previous glasdegib dose 7 days after discontinuation of the inducer. Risk D: Consider therapy modification

Glecaprevir and Pibrentasvir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Glecaprevir and Pibrentasvir. Risk C: Monitor therapy

GuanFACINE: CYP3A4 Inducers (Moderate) may decrease the serum concentration of GuanFACINE. Management: Increase extended-release guanfacine dose by up to double when initiating guanfacine in patients taking CYP3A4 inducers or if initiating a CYP3A4 inducer in a patient already taking extended-release guanfacine. Monitor for reduced guanfacine efficacy. Risk D: Consider therapy modification

Hormonal Contraceptives: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Hormonal Contraceptives. Management: Advise patients to use an alternative method of contraception or a back-up method during coadministration, and to continue back-up contraception for 28 days after discontinuing a moderate CYP3A4 inducer to ensure contraceptive reliability. Risk D: Consider therapy modification

HYDROcodone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of HYDROcodone. Risk C: Monitor therapy

Hydrocortisone (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Hydrocortisone (Systemic). Risk C: Monitor therapy

Ibrexafungerp: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ibrexafungerp. Risk X: Avoid combination

Ibrutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ibrutinib. Risk C: Monitor therapy

Idelalisib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Idelalisib. Risk C: Monitor therapy

Ifosfamide: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Ifosfamide. CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Ifosfamide. Risk C: Monitor therapy

Imatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Imatinib. Risk C: Monitor therapy

Indinavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Indinavir. Management: Consider avoiding the combination of indinavir and moderate CYP3A4 inducers whenever possible due to the risk for decreased indinavir concentrations, reduced efficacy, and development of resistance. If combined, monitor for indinavir treatment failure. Risk D: Consider therapy modification

Infigratinib: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Infigratinib. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Infigratinib. Risk X: Avoid combination

Irinotecan Products: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Irinotecan Products. Specifically, concentrations of SN-38 may be reduced. Risk C: Monitor therapy

Isavuconazonium Sulfate: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Isavuconazonium Sulfate. Specifically, CYP3A4 Inducers (Moderate) may decrease isavuconazole serum concentrations. Risk C: Monitor therapy

Isradipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Isradipine. Risk C: Monitor therapy

Istradefylline: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Istradefylline. Risk C: Monitor therapy

Itraconazole: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Itraconazole. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Itraconazole. Risk C: Monitor therapy

Ivabradine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ivabradine. Risk X: Avoid combination

Ivacaftor: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ivacaftor. Risk C: Monitor therapy

Ixabepilone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ixabepilone. Risk C: Monitor therapy

Ixazomib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ixazomib. Risk C: Monitor therapy

Ketamine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ketamine. Risk C: Monitor therapy

Ketoconazole (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ketoconazole (Systemic). Risk C: Monitor therapy

Lapatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lapatinib. Risk C: Monitor therapy

Larotrectinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Larotrectinib. Management: Double the larotrectinib dose if used together with a moderate CYP3A4 inducer. Following discontinuation of the moderate CYP3A4 inducer, resume the previous dose of larotrectinib after a period of 3 to 5 times the inducer's half-life. Risk D: Consider therapy modification

Lefamulin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lefamulin. Management: Avoid concomitant use of lefamulin with moderate CYP3A4 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lefamulin (Intravenous): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lefamulin (Intravenous). Management: Avoid concomitant use of lefamulin (intravenous) with moderate CYP3A4 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lemborexant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lemborexant. Risk X: Avoid combination

Lenacapavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lenacapavir. Risk X: Avoid combination

Leniolisib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Leniolisib. Risk X: Avoid combination

Lercanidipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lercanidipine. Risk C: Monitor therapy

Levamlodipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Levamlodipine. Risk C: Monitor therapy

Levoketoconazole: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Levoketoconazole. Risk C: Monitor therapy

Levomethadone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Levomethadone. Risk C: Monitor therapy

LinaGLIPtin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of LinaGLIPtin. Risk C: Monitor therapy

Lonafarnib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lonafarnib. Risk X: Avoid combination

Lopinavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lopinavir. Risk C: Monitor therapy

Lorlatinib: CYP3A4 Inducers (Moderate) may enhance the hepatotoxic effect of Lorlatinib. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lorlatinib. Management: Avoid use of lorlatinib with moderate CYP3A4 inducers. If such a combination must be used, increase lorlatinib to 125 mg daily. Monitor for reduced lorlatinib efficacy and consider closer monitoring of AST, ALT, and bilirubin. Risk D: Consider therapy modification

Lovastatin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lovastatin. Risk C: Monitor therapy

Lumacaftor and Ivacaftor: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lumacaftor and Ivacaftor. Risk C: Monitor therapy

Lumateperone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lumateperone. Risk X: Avoid combination

Lurasidone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Lurasidone. Management: Monitor for decreased lurasidone effects if combined with moderate CYP3A4 inducers and consider increasing the lurasidone dose if coadministered with a moderate CYP3A4 inducer for 7 or more days. Risk D: Consider therapy modification

Macitentan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Macitentan. Risk C: Monitor therapy

Maraviroc: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Maraviroc. Management: Increase maraviroc adult dose to 600 mg twice/day, but only if not receiving a strong CYP3A4 inhibitor. Not recommended for pediatric patients not also receiving a strong CYP3A4 inhibitor. Contraindicated in patients with CrCl less than 30 mL/min. Risk D: Consider therapy modification

Maribavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Maribavir. Risk C: Monitor therapy

Mavacamten: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mavacamten. Risk X: Avoid combination

Mefloquine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mefloquine. Risk C: Monitor therapy

Meperidine: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Meperidine. Specifically, concentrations of normeperidine, the CNS stimulating metabolite, may be increased. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Meperidine. Risk C: Monitor therapy

Methadone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Methadone. Risk C: Monitor therapy

Methotrexate: Retinoic Acid Derivatives may enhance the hepatotoxic effect of Methotrexate. Risk C: Monitor therapy

Methoxsalen (Systemic): Photosensitizing Agents may enhance the photosensitizing effect of Methoxsalen (Systemic). Risk C: Monitor therapy

MethylPREDNISolone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of MethylPREDNISolone. Risk C: Monitor therapy

Mianserin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mianserin. Risk C: Monitor therapy

Midazolam: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Midazolam. Risk C: Monitor therapy

Midostaurin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Midostaurin. Risk C: Monitor therapy

MiFEPRIStone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of MiFEPRIStone. Management: Avoid combined use in patients treated for Cushing's disease. When used for pregnancy termination, mifepristone efficacy may be reduced and an alternative pregnancy termination procedure may be warranted. Ensure a follow-up assessment after combined use. Risk D: Consider therapy modification

Mirodenafil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mirodenafil. Risk C: Monitor therapy

Mitapivat: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mitapivat. Management: Consider alternatives to this combination when possible. If combined, monitor hemoglobin and titrate mitapivat beyond 50 mg twice daily, if needed, but do not exceed doses of 100 mg twice daily. Risk D: Consider therapy modification

Mobocertinib: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Mobocertinib. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Mobocertinib. Risk X: Avoid combination

Multivitamins/Fluoride (with ADE): May enhance the adverse/toxic effect of Retinoic Acid Derivatives. Risk X: Avoid combination

Multivitamins/Minerals (with ADEK, Folate, Iron): May enhance the adverse/toxic effect of Retinoic Acid Derivatives. Risk X: Avoid combination

Multivitamins/Minerals (with AE, No Iron): May enhance the adverse/toxic effect of Retinoic Acid Derivatives. Risk X: Avoid combination

Naldemedine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Naldemedine. Risk C: Monitor therapy

Naloxegol: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Naloxegol. Risk C: Monitor therapy

Nelfinavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nelfinavir. Risk C: Monitor therapy

Neratinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Neratinib. Risk X: Avoid combination

Netupitant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Netupitant. Risk C: Monitor therapy

Nevirapine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nevirapine. Risk C: Monitor therapy

NIFEdipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of NIFEdipine. Risk C: Monitor therapy

Nilotinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nilotinib. Risk C: Monitor therapy

Nilvadipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nilvadipine. Risk C: Monitor therapy

NiMODipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of NiMODipine. Risk C: Monitor therapy

Nirmatrelvir and Ritonavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nirmatrelvir and Ritonavir. Risk C: Monitor therapy

Nirogacestat: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nirogacestat. Risk X: Avoid combination

Nisoldipine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Nisoldipine. Risk X: Avoid combination

Olaparib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Olaparib. Risk X: Avoid combination

Oliceridine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Oliceridine. Risk C: Monitor therapy

Olmutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Olmutinib. Risk C: Monitor therapy

Olutasidenib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Olutasidenib. Risk X: Avoid combination

Omaveloxolone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Omaveloxolone. Risk X: Avoid combination

Orelabrutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Orelabrutinib. Risk X: Avoid combination

Osimertinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Osimertinib. Risk C: Monitor therapy

OxyCODONE: CYP3A4 Inducers (Moderate) may decrease the serum concentration of OxyCODONE. Risk C: Monitor therapy

PACLitaxel (Conventional): May increase the serum concentration of Bexarotene (Systemic). Bexarotene (Systemic) may decrease the serum concentration of PACLitaxel (Conventional). Risk C: Monitor therapy

PACLitaxel (Protein Bound): Bexarotene (Systemic) may decrease the serum concentration of PACLitaxel (Protein Bound). PACLitaxel (Protein Bound) may increase the serum concentration of Bexarotene (Systemic). Risk C: Monitor therapy

Pacritinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pacritinib. Risk X: Avoid combination

Palbociclib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Palbociclib. Risk C: Monitor therapy

Palovarotene: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Palovarotene. Risk X: Avoid combination

PAZOPanib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of PAZOPanib. Risk C: Monitor therapy

Pemigatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pemigatinib. Risk X: Avoid combination

Perampanel: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Perampanel. Management: Increase perampanel starting dose to 4 mg/day if used with moderate CYP3A4 inducers. Increase perampanel dose by 2 mg/day no more than once weekly based on response and tolerability. Dose adjustments may be needed if the inducer is discontinued. Risk D: Consider therapy modification

Pimavanserin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pimavanserin. Risk X: Avoid combination

Piperaquine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Piperaquine. Risk C: Monitor therapy

Pirtobrutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pirtobrutinib. Management: Avoid concomitant use if possible. If combined, if the current pirtobrutinib dose is 200 mg once daily, increase to 300 mg once daily. If current pirtobrutinib dose is 50 mg or 100 mg once daily, increase the dose by 50 mg. Risk D: Consider therapy modification

PONATinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of PONATinib. Risk C: Monitor therapy

Porfimer: Photosensitizing Agents may enhance the photosensitizing effect of Porfimer. Risk C: Monitor therapy

Pralsetinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pralsetinib. Management: If this combo cannot be avoided, increase pralsetinib dose from 400 mg daily to 600 mg daily; from 300 mg daily to 500 mg daily; and from 200 mg daily to 300 mg daily. Risk D: Consider therapy modification

Praziquantel: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Praziquantel. Management: Consider alternatives to this combination whenever possible. If combined, monitor closely for reduced praziquantel efficacy. If possible, stop the moderate CYP3A4 inducer 2 to 4 weeks before praziquantel initiation. Risk D: Consider therapy modification

PrednisoLONE (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of PrednisoLONE (Systemic). Risk C: Monitor therapy

PredniSONE: CYP3A4 Inducers (Moderate) may decrease the serum concentration of PredniSONE. Risk C: Monitor therapy

Pretomanid: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Pretomanid. Risk X: Avoid combination

Promazine: May enhance the myelosuppressive effect of Myelosuppressive Agents. Risk C: Monitor therapy

QUEtiapine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of QUEtiapine. Risk C: Monitor therapy

QuiNIDine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of QuiNIDine. Risk C: Monitor therapy

QuiNINE: CYP3A4 Inducers (Moderate) may decrease the serum concentration of QuiNINE. Risk C: Monitor therapy

Quizartinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Quizartinib. Risk X: Avoid combination

Ranolazine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ranolazine. Risk X: Avoid combination

Regorafenib: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Regorafenib. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Regorafenib. Risk C: Monitor therapy

Repaglinide: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Repaglinide. Risk C: Monitor therapy

Repotrectinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Repotrectinib. Risk X: Avoid combination

Ribociclib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ribociclib. Risk C: Monitor therapy

Rilpivirine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Rilpivirine. Risk C: Monitor therapy

Rimegepant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Rimegepant. Risk X: Avoid combination

Ripretinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ripretinib. Management: Avoid this combination if possible. If concomitant use is required, increase ripretinib to 150 mg twice daily. Decrease ripretinib to 150 mg once daily 14 days after stopping a moderate CYP3A4 inducer. Monitor patients for ripretinib response and toxicity Risk D: Consider therapy modification

RisperiDONE: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of RisperiDONE. CYP3A4 Inducers (Moderate) may decrease the serum concentration of RisperiDONE. Risk C: Monitor therapy

Ritlecitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ritlecitinib. Risk C: Monitor therapy

Ritonavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ritonavir. Risk C: Monitor therapy

Roflumilast (Systemic): CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Roflumilast (Systemic). CYP3A4 Inducers (Moderate) may decrease the serum concentration of Roflumilast (Systemic). Risk C: Monitor therapy

Rolapitant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Rolapitant. Risk C: Monitor therapy

Ropeginterferon Alfa-2b: Myelosuppressive Agents may enhance the myelosuppressive effect of Ropeginterferon Alfa-2b. Management: Avoid coadministration of ropeginterferon alfa-2b and other myelosuppressive agents. If this combination cannot be avoided, monitor patients for excessive myelosuppressive effects. Risk D: Consider therapy modification

Samidorphan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Samidorphan. Risk C: Monitor therapy

Saquinavir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Saquinavir. Risk C: Monitor therapy

Selpercatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Selpercatinib. Risk X: Avoid combination

Selumetinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Selumetinib. Risk X: Avoid combination

Sertraline: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sertraline. Risk C: Monitor therapy

Sildenafil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sildenafil. Risk C: Monitor therapy

Simeprevir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Simeprevir. Risk X: Avoid combination

Simvastatin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Simvastatin. Risk C: Monitor therapy

Sirolimus (Conventional): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sirolimus (Conventional). Risk C: Monitor therapy

Sirolimus (Protein Bound): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sirolimus (Protein Bound). Risk C: Monitor therapy

Sonidegib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sonidegib. Risk X: Avoid combination

SORAfenib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of SORAfenib. Risk C: Monitor therapy

Sotorasib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sotorasib. Risk C: Monitor therapy

Sparsentan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Sparsentan. Risk C: Monitor therapy

SUFentanil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of SUFentanil. Risk C: Monitor therapy

SUNItinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of SUNItinib. Risk C: Monitor therapy

Suvorexant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Suvorexant. Risk C: Monitor therapy

Tacrolimus (Systemic): CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tacrolimus (Systemic). Risk C: Monitor therapy

Tadalafil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tadalafil. Risk C: Monitor therapy

Tamoxifen: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Tamoxifen. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tamoxifen. Risk C: Monitor therapy

Tasimelteon: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tasimelteon. Risk C: Monitor therapy

Tazemetostat: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tazemetostat. Risk X: Avoid combination

Temsirolimus: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Temsirolimus. Specifically, sirolimus concentrations may be decreased. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Temsirolimus. Risk C: Monitor therapy

Tetracyclines: May enhance the adverse/toxic effect of Retinoic Acid Derivatives. The development of pseudotumor cerebri is of particular concern. Risk X: Avoid combination

Tetrahydrocannabinol: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tetrahydrocannabinol. Risk C: Monitor therapy

Tetrahydrocannabinol and Cannabidiol: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tetrahydrocannabinol and Cannabidiol. Risk C: Monitor therapy

Tezacaftor and Ivacaftor: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tezacaftor and Ivacaftor. Risk C: Monitor therapy

Thiotepa: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Thiotepa. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Thiotepa. Risk C: Monitor therapy

Ticagrelor: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Ticagrelor. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ticagrelor. Risk C: Monitor therapy

Tivozanib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tivozanib. Risk C: Monitor therapy

Tofacitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tofacitinib. Risk C: Monitor therapy

Tolvaptan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tolvaptan. Risk C: Monitor therapy

Toremifene: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Toremifene. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Toremifene. Risk C: Monitor therapy

Trabectedin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Trabectedin. Risk C: Monitor therapy

TraMADol: CYP3A4 Inducers (Moderate) may decrease the serum concentration of TraMADol. Risk C: Monitor therapy

TraZODone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of TraZODone. Risk C: Monitor therapy

Triazolam: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Triazolam. Risk C: Monitor therapy

Tucatinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Tucatinib. Risk C: Monitor therapy

Ubrogepant: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ubrogepant. Management: Use an initial ubrogepant dose of 100 mg and second dose (if needed) of 100 mg when used with a moderate CYP3A4 inducer. Risk D: Consider therapy modification

Ulipristal: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Ulipristal. Risk X: Avoid combination

Upadacitinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Upadacitinib. Risk C: Monitor therapy

Valbenazine: CYP3A4 Inducers (Moderate) may decrease serum concentrations of the active metabolite(s) of Valbenazine. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Valbenazine. Risk C: Monitor therapy

Vandetanib: CYP3A4 Inducers (Moderate) may increase serum concentrations of the active metabolite(s) of Vandetanib. CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vandetanib. Risk C: Monitor therapy

Velpatasvir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Velpatasvir. Risk X: Avoid combination

Vemurafenib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vemurafenib. Risk C: Monitor therapy

Venetoclax: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Venetoclax. Risk X: Avoid combination

Verapamil: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Verapamil. Risk C: Monitor therapy

Verteporfin: Photosensitizing Agents may enhance the photosensitizing effect of Verteporfin. Risk C: Monitor therapy

Vilazodone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vilazodone. Risk C: Monitor therapy

Vitamin A: May enhance the adverse/toxic effect of Retinoic Acid Derivatives. Risk X: Avoid combination

Voclosporin: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Voclosporin. Risk X: Avoid combination

Vonoprazan: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vonoprazan. Risk X: Avoid combination

Vorapaxar: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vorapaxar. Risk X: Avoid combination

Voriconazole: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Voriconazole. Risk C: Monitor therapy

Vortioxetine: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Vortioxetine. Risk C: Monitor therapy

Voxelotor: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Voxelotor. Management: Avoid concomitant use of voxelotor and moderate CYP3A4 inducers. If unavoidable, increase the voxelotor dose to 2,000 mg once daily. For children ages 4 to less than 12 years, weight-based dose adjustments are required. See full monograph for details. Risk D: Consider therapy modification

Voxilaprevir: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Voxilaprevir. Risk X: Avoid combination

Zaleplon: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Zaleplon. Risk C: Monitor therapy

Zanubrutinib: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Zanubrutinib. Management: Avoid this combination if possible. If coadministration of zanubrutinib and a moderate CYP3A4 inducer is required, increase the zanubrutinib dose to 320 mg twice daily. Risk D: Consider therapy modification

Zolpidem: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Zolpidem. Risk C: Monitor therapy

Zopiclone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Zopiclone. Risk C: Monitor therapy

Zuranolone: CYP3A4 Inducers (Moderate) may decrease the serum concentration of Zuranolone. Risk X: Avoid combination

Food Interactions

Bioavailability is increased when administered with a fat-containing meal. Management: Administer with food.

Reproductive Considerations

Issues related to females:

Evaluate pregnancy status prior to use in females of reproductive potential. Effective contraception should be used for 1 month prior to initiating treatment, during therapy, and for at least 1 month after the last bexarotene dose. Either abstinence or two forms of reliable contraception (one should be nonhormonal) are recommended.

A negative pregnancy test (sensitivity of at least 50 mIU/mL) within 1 week prior to beginning therapy, and monthly, thereafter, is required for females of reproductive potential. Treatment should begin on the second or third day of a normal menstrual period. A maximum 1-month supply is recommended so that pregnancy tests may be evaluated.

Females who desire conception following bexarotene therapy should have a minimum washout period of 1 month (Scarisbrick 2013).

Issues related to males: Male patients must use a condom during sexual intercourse with females who are pregnant, possibly pregnant, or who may become pregnant during therapy and for at least 1 month after the last bexarotene dose.

Pregnancy Considerations

Bexarotene use is contraindicated in pregnancy. [US Boxed Warning]: Bexarotene is a member of the retinoid class of drugs that is associated with birth defects in humans. Bexarotene also caused birth defects when administered orally to pregnant rats. Bexarotene must not be administered to a pregnant woman. If a woman becomes pregnant while taking the drug, bexarotene must be stopped immediately and appropriate counseling be given.

Breastfeeding Considerations

It is not known if bexarotene is present in breast milk.

Due to the potential for serious adverse reactions in a breastfeeding infant, breastfeeding is not recommended by the manufacturer.

Monitoring Parameters

If female, pregnancy test within 1 week before initiation then monthly while on bexarotene; fasting lipid panel (before initiation, then weekly until lipid response established [usually 2 to 4 weeks] and then at 8-week intervals thereafter); LFTs (baseline, then at 1, 2, and 4 weeks after initiation, then at 8-week intervals thereafter if stable); monitor thyroid function tests (including free T4) at baseline and weekly for the first 5 to 7 weeks, then every 1 to 2 months (Hamnvik 2011); CBC with differential (baseline and periodic); blood glucose (in diabetic patients). Evaluate pregnancy status prior to use in females of reproductive potential. Ophthalmic exam (if visual abnormalities occur). Monitor adherence.

The American Society of Clinical Oncology hepatitis B virus (HBV) screening and management provisional clinical opinion (ASCO [Hwang 2020]) recommends HBV screening with hepatitis B surface antigen, hepatitis B core antibody, total Ig or IgG, and antibody to hepatitis B surface antigen prior to beginning (or at the beginning of) systemic anticancer therapy; do not delay treatment for screening/results. Detection of chronic or past HBV infection requires a risk assessment to determine antiviral prophylaxis requirements, monitoring, and follow-up.

UK consensus monitoring recommendations: CBC with differential, urea, electrolytes, liver function tests, fasting lipid panel, free T4 and free T3 levels, blood glucose, and creatine kinase prior to treatment and every 1 to 2 weeks until stable for at least 1 month and for 2 consecutive tests, then every 2 weeks during dose escalations, then once a month after dose is optimized and blood work is stable for 2 consecutive tests. Thyroid-stimulating hormone at baseline (only). Refer to consensus recommendations for further details (Scarisbrick 2013).

Mechanism of Action

Bexarotene selectively binds to and activates retinoid X receptors (RXRs). Once activated, RXRs function as transcription factors to regulate the expression of genes which control cellular differentiation and proliferation. Bexarotene inhibits the growth in vitro of some tumor cell lines of hematopoietic and squamous cell origin and induces tumor regression in vivo in some animal models.

Pharmacokinetics (Adult Data Unless Noted)

Absorption: AUC increased 35% and Cmax increased 48% by a fat-containing meal.

Protein binding: >99% to plasma proteins.

Metabolism: Hepatic via CYP3A4 isoenzyme to four metabolites; further metabolized by glucuronidation.

Half-life elimination: ~7 hours.

Time to peak: ~2 hours.

Excretion: Feces (primarily); urine (minimal, <1%).

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (AR) Argentina: Targretin;
  • (AT) Austria: Targretin;
  • (BE) Belgium: Targretin;
  • (BG) Bulgaria: Targretin;
  • (CL) Chile: Targretin;
  • (DE) Germany: Targretin;
  • (ES) Spain: Bexaroteno cipla | Targretin;
  • (FI) Finland: Targretin;
  • (FR) France: Bexarotene cipla | Targretin;
  • (GB) United Kingdom: Targretin;
  • (GR) Greece: Targretin;
  • (HU) Hungary: Targretin;
  • (IE) Ireland: Targretin;
  • (IT) Italy: Targretin;
  • (JP) Japan: Targretin;
  • (NL) Netherlands: Targretin;
  • (NO) Norway: Targretin;
  • (PR) Puerto Rico: Targretin;
  • (SE) Sweden: Targretin;
  • (SI) Slovenia: Targretin;
  • (SK) Slovakia: Targretin;
  • (TR) Turkey: Bexgratin
  1. <800> Hazardous Drugs—Handling in Healthcare Settings. United States Pharmacopeia and National Formulary (USP 43-NF 38). Rockville, MD: United States Pharmacopeia Convention; 2020:74-92.
  2. Bexarotene capsules [prescribing information]. Lyndhurst, NJ: Amerigen Pharmaceuticals Inc; September 2018.
  3. Burch HB. Drug effects on the thyroid. N Engl J Med. 2019;381(8):749-761. doi:10.1056/NEJMra1901214 [PubMed 31433922]
  4. Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19(9):2456-2471. [PubMed 11331325]
  5. Griggs JJ, Bohlke K, Balaban EP, et al. Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO guideline update. J Clin Oncol. 2021;39(18):2037-2048. doi:10.1200/JCO.21.00471 [PubMed 33939491]
  6. Hamnvik OP, Larsen PR, Marqusee E. Thyroid dysfunction from antineoplastic agents. J Natl Cancer Inst. 2011;103(21):1572-1587. [PubMed 22010182]
  7. Hwang JP, Feld JJ, Hammond SP, et al. Hepatitis B virus screening and management for patients with cancer prior to therapy: ASCO provisional clinical opinion update. J Clin Oncol. 2020;38(31):3698-3715. doi:10.1200/JCO.20.01757 [PubMed 32716741]
  8. "Inactive" ingredients in pharmaceutical products: update (subject review). American Academy of Pediatrics committee on drugs. Pediatrics. 1997;99(2):268-278. doi:10.1542/peds.99.2.268 [PubMed 9024461]
  9. Lam MS. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs. Pharmacotherapy. 2011;31(2):164-192. doi:10.1592/phco.31.2.164 [PubMed 21275495]
  10. Prince HM, Kim YH, Horwitz SM, et al; ALCANZA study group. Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555-566. doi:10.1016/S0140-6736(17)31266-7 [PubMed 28600132]
  11. Rupoli S, Canafoglia L, Goteri G, et al. Results of a prospective phase II trial with oral low-dose bexarotene plus photochemotherapy (PUVA) in refractory and/or relapsed patients with mycosis fungoides. Eur J Dermatol. 2016;26(1):13-20. doi:10.1684/ejd.2015.2672 [PubMed 26678311]
  12. Scarisbrick JJ, Morris S, Azurdia R, et al. U.K. consensus statement on safe clinical prescribing of bexarotene for patients with cutaneous T-cell lymphoma. Br J Dermatol. 2013;168(1):192-200. doi:10.1111/bjd.12042 [PubMed 22963233]
  13. Szabo E, Mao JT, Lam S, Reid ME, et al. Chemoprevention of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 suppl):e40S-e60S. [PubMed 23649449]
  14. Targretin (bexarotene) capsules [prescribing information]. St. Petersburg, FL: Catalent Pharma Solutions LLC; April 2020.
  15. US Department of Health and Human Services; Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health. NIOSH list of antineoplastic and other hazardous drugs in healthcare settings 2016. https://www.cdc.gov/niosh/docs/2016-161/. Updated September 2016. Accessed October 5, 2016.
  16. Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Semin Dial. 2007;20(3):217-219. doi:10.1111/j.1525-139X.2007.00280.x [PubMed 17555487]
Topic 8996 Version 349.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟