INTRODUCTION — Surgical site infections (SSIs) are a common cause of health care-associated infection [1-6]. The United States Centers for Disease Control and Prevention (CDC) has developed criteria that define SSI as infection related to an operative procedure that occurs at or near the surgical incision within 30 days of the procedure or within 90 days if prosthetic material is implanted at surgery (table 1) [1,2]. SSIs are often localized to the incision site (superficial/deep incisional SSI) but can also extend into deep tissues. (See "Antimicrobial prophylaxis for prevention of surgical site infection in adults", section on 'Definitions'.)
Among surgical patients, SSIs are the most common nosocomial infection, accounting for 38 percent of nosocomial infections. It is estimated that SSIs develop in 2 to 5 percent of the more than 30 million patients undergoing surgical procedures each year (ie, 1 in 24 patients who undergo inpatient surgery in the United States has a postoperative SSI) [1,2].
The CDC, the Institute for Healthcare Improvement, and the Surgical Care Improvement Project promote a number of interventions to improve patient care and prevent avoidable deaths [7,8]. These include several interventions for reducing the incidence of SSIs discussed in the following sections. In one report, hospitals that instituted programs for appropriate use of antibiotics, approach to hair removal, glucose management, and thermoregulation reported a mean 27 percent reduction in SSI rates over one year (from 2.3 to 1.7 percent) [9]. In another study including more than 400,000 surgical patients, those who received at least two of the above measures had lower rates of SSI (adjusted odds ratio 0.85, 95% CI 0.74-0.95) [10].
The general measures for the prevention of SSI are reviewed here. Considerations for specific surgical populations are reviewed in individual procedural topic reviews.
RISK FACTORS FOR SSI — The epidemiology and risk factors for SSI (table 1) are reviewed separately. (See "Risk factors for impaired wound healing and wound complications", section on 'Surgical site infection' and "Overview of the evaluation and management of surgical site infection", section on 'Risk assessment'.)
SURGICAL PLANNING
Timing of surgery — The timing of surgery relative to other treatments can impact the risk for developing wound complications and SSI. For example, emergency surgery, ongoing cancer therapy, the presence of a remote infection, or malnutrition often affect the timing of surgery and may in turn lead to an increased or decreased risks of a subsequent SSI as discussed below. (See "Risk factors for impaired wound healing and wound complications".)
Emergency surgery — Patients undergoing emergency or urgent surgical procedures have higher risk of adverse outcomes, including SSI. In some instances, temporizing measures can be used to convert an emergency to a more elective situation or to optimize patient physiology and tissue perfusion.
As an example, for the treatment of colonic obstruction, stenting can be used in the interim. (See "Enteral stents for the management of malignant colorectal obstruction", section on 'Stenting as a bridge to surgery'.)
Cancer therapy — Chemotherapy and radiation therapy increase the risk of subsequent SSI. (See "Overview of breast reconstruction", section on 'Integrating radiation therapy and breast reconstruction'.)
Remote infection — Prior to elective surgery, patients with evidence of active infection at a remote site should complete treatment for the infection prior to surgery, particularly in circumstances when placement of prosthetic material is anticipated. For circumstances in which urgent surgery is required, the risk of remote site infection must be weighed with the timing of surgical intervention on an individual basis.
Malnutrition — Hypoalbuminemia (defined as an albumen <30 mg/dL) increases the risk of SSI sixfold compared with normal albumin [11]. However, in two trials, no benefit was gained from delaying surgery to provide total parenteral nutrition to malnourished patients [12,13]. By contrast, a meta-analysis demonstrated a reduction in postoperative infectious complications in patients receiving enteral diets with glutamine and/or arginine [14]. These issues are discussed in detail separately. (See "Overview of perioperative nutrition support".)
Medication management — Immunosuppressive therapies impair wound healing but are not generally thought to be directly related to the development of SSI. Though, for certain types of surgeries (eg, joint arthroplasty, spine, and solid organ transplant procedures), the dosing and timing of immunosuppressive therapies may impact outcomes.
●(See "Risk factors for impaired wound healing and wound complications", section on 'Immunosuppressive therapy' and "Overview of the evaluation and management of surgical site infection", section on 'Incidence and risk factors'.)
●(See "The management of the surgical patient taking glucocorticoids" and "Preoperative evaluation and perioperative management of patients with rheumatic diseases".)
Minimally invasive versus open approach — Minimally invasive and laparoscopic-assisted procedures are associated with lower SSI rates compared with open procedures. For cholecystectomy and colon surgery, the SSI rate is significantly lower with laparoscopy within each risk category, while, for appendectomy and gastric surgery, use of laparoscopy affected SSI rates only when no other risk factors were present [15,16]. (See "Abdominal access techniques used in laparoscopic surgery".)
PATIENT PREPARATION
Smoking cessation — Smoking is associated with an increased risk for SSI and other complications [17]. The risk for smokers who have quit is intermediate between current smokers and those who have never smoked. Smoking cessation four to six weeks prior to elective surgery is recommended to reduce the risk of pulmonary complications; smoking cessation also reduces wound complications including SSI [18-21]. (See "Overview of smoking cessation management in adults" and "Strategies to reduce postoperative pulmonary complications in adults", section on 'Smoking cessation' and "Risk factors for impaired wound healing and wound complications", section on 'Smoking and nicotine replacement therapy'.)
A Danish trial randomly assigned 120 patients to smoking intervention or no smoking intervention six to eight weeks prior to scheduled surgery [21]. The overall complication rate was significantly reduced for the smoking intervention group (18 versus 52 percent). Wound-related complications were also significantly reduced (overall: 5 versus 31 percent; SSI: 4 versus 23 percent).
Smoking cessation is particularly important to surgeries that involve the creation of flaps, such as flap-based breast reconstruction after mastectomy, and other reconstructive procedures. A large review from the American College of Surgeons National Surgical Quality Improvement Program database evaluated outcomes for a variety of plastic surgery procedures [22]. Smokers had a higher likelihood of wound complications (odds ratio [OR] 1.49, 95% CI 1.31-1.70), wound dehiscence (OR 1.84, 95% CI 1.41-2.41), and superficial incisional SSI (OR 1.40, 95% CI 1.40-1.63). (See "Overview of breast reconstruction", section on 'History'.)
Bowel preparation — Bowel preparation prior to colon surgery reduces SSI rates. Issues related to bowel preparation prior to elective colorectal surgery are discussed elsewhere. (See "Overview of colon resection", section on 'Bowel preparation'.)
The value of bowel preparation in conjunction with other intra-abdominal surgeries not directly involving the colon is not proven, and we do not recommend this practice for reducing the risk of SSI or other infection (eg, infected prosthesis) [23].
INFECTION CONTROL — An infection control program is an essential part of SSI prevention [5,24]. An effective program can reduce the rate of SSIs by 40 percent [25,26]. In addition to a clean operating room environment, the most important factors in the prevention of SSI are timely administration of effective preoperative antibiotics and careful attention to operative technique. (See 'Antimicrobial prophylaxis' below and 'Surgical technique' below and "Overview of the evaluation and management of surgical site infection", section on 'Measures to reduce risk'.)
Operating room cleanliness and disinfection are shared responsibilities among operating room personnel who clean and disinfect surfaces before the first procedure of the day; between subsequent procedures; and again after the last procedure of the day. Further information about cleaning processes in the operating room are available at the Centers for Disease Control and the Association of Operating Room Nursing (AORN) websites.
A number of other perioperative infection control interventions have been used to reduce the risk of SSIs, including hand hygiene, use of gloves and other barrier devices by operating room personnel, patient decolonization, skin antisepsis, and hair removal by clipping instead of shaving [7,27-29]. These interventions are designed to minimize patient contact with microbial flora from the hands, hair, scalp, nares, and oropharynx of hospital personnel. (See 'Hand hygiene' below and 'Surgical attire and barrier devices' below and 'S. aureus decolonization' below and 'Skin antisepsis' below and 'Hair removal' below.)
SSI prevention strategies can be bundled for improved adherence, but there is no current consensus of the optimal components [30-32]. (See "Patient safety in the operating room", section on 'Approaches to risk reduction'.)
Active surveillance and reporting of rates of SSIs to individual surgeons can also reduce infection rates [33,34]. Rates can be as surgeon specific, service specific, and hospital-wide and may be categorized within discrete risk index scores. Identifying and monitoring SSI rates among outpatients is difficult. Methodologies include surveillance by patients and health care personnel (including physicians and nurses), surveillance via pharmacy records, and surveillance via health plan records [35-39]. Surveillance may be limited to "complex" (ie, not superficial incisional) SSIs diagnosed in inpatient settings; a risk index may be used to for stratification of "complex" SSIs [40].
Antimicrobial prophylaxis — Antimicrobial prophylaxis is an important intervention for prevention of SSI; it is discussed in detail separately. (See "Antimicrobial prophylaxis for prevention of surgical site infection in adults".)
The use of a surgical time-out to ensure timely administration of antimicrobial prophylaxis improves compliance and may reduce SSI (table 2) [41].
Hand hygiene — Surgical hand hygiene should encompass preoperative cleansing of hands (including under the nails) and forearms with an antiseptic agent. Cleansing with aqueous alcoholic solution may be as effective as traditional hand scrubbing with antiseptic soap for prevention of SSIs [42,43]. Either antimicrobial soap or an alcohol-based hand rub may be used [3,44]. The recommended duration of scrubbing with alcohol-based hand rubs is shorter than with antimicrobial soap (varies by product), and scrub brushes are not required for preoperative hand cleaning by surgical staff [44,45]. (See "Infection prevention: Precautions for preventing transmission of infection", section on 'Hand hygiene'.)
Artificial nails remain heavily colonized even after surgical scrubbing [46]. Removal of artificial finger nails, clipping to reduce nail length, and removal of watches and finger rings prior to surgical scrubbing are recommended as a common-sense practice; failure to so do may result increased bacterial counts [47]. However, data evaluating the effect of these interventions on preventing SSI are limited [48,49].
All members of the surgical team must practice hand hygiene. As an example, contaminated hands of anesthesiologists can serve as a significant source of patient environmental and stopcock set contamination in the operating room [50].
Surgical attire and barrier devices — Surgical attire includes scrubs, gloves, and barrier devices (masks, caps, gowns, drapes, and shoe covers).
We agree with the following guidelines issued by the American College of Surgeons (ACS) regarding surgical attire [6]:
●Scrubs should not be worn during patient encounters outside the operating room.
●Operating room scrubs should not be worn outside the hospital perimeter. Scrubs worn within the hospital perimeter should be covered by a clean lab coat or other appropriate cover-up.
●Scrubs and hats worn during contaminated or dirty cases should be changed before subsequent cases, even if not visibly soiled.
●Visibly soiled scrubs should be changed as soon as is feasible.
●The mouth, nose, and hair should be covered during all invasive procedures. Jewelry worn on the head and neck should be removed or covered.
Double-gloving protects surgical personnel from exposure to infectious blood and body fluids and likely reduces the potential transmission of bacteria to patients from the hands of surgical personnel via undetected perforations. [51-54]. However, there is no evidence that the presence of glove defects increases the risk of SSI. However, double gloving reduces the risk of holes in the inner glove, and, as such, routine double gloving is recommended by the American College of Surgeons primarily to protect the surgeon.
Changing outer gloves and using new instruments for closure theoretically makes sense, particularly for contaminated and dirty procedures (table 3). The efficacy of routine glove changes for reducing the incidence of SSI has been studied for colorectal surgery [55,56], joint implant surgery [57], spine/neurosurgery [58,59], surgeries that handle prosthetic materials (eg, vascular grafts [60-62]), and cesarean section [63-66], with mixed results. Most of these studies were observational and evaluated bundles as opposed to directly evaluating the effect of glove change. Some found that intraoperative handling of implants without changing gloves beforehand led to intra-operative implant contamination. For cesarean sections and intra-abdominal surgeries, a few randomized trials have found decreased rates of SSIs when gloves are changed prior to closure [63-67].
The primary role for other barrier devices (masks, caps, gowns, drapes, and shoe covers) is to protect operating room personnel from exposure to infectious blood or body fluids. Their role in SSI prevention is not supported by rigorous study [68,69], but their routine use is universally accepted in hospitals where such equipment is available [6,70].
S. aureus decolonization — The optimal approach to S. aureus screening and decolonization remains uncertain. Several studies have demonstrated that preoperative decolonization reduced SSI rates in colonized surgical patients [71-95], while others have found no benefit for S. aureus decolonization of patients undergoing surgery [96]. Overall, S. aureus decolonization appears most beneficial in patients undergoing orthopedic or cardiac procedures [84]. Importantly, decolonization strategies should focus on both MRSA and MSSA.
S. aureus decolonization may be reasonable for surgical patients known to be nasal carriers of S. aureus who have a high risk of negative outcomes if S. aureus infection were to develop at the surgical site (eg, cardiothoracic surgery, orthopedic procedures with hardware implantation, immunocompromised patients) [4,5,71-95]. In a prospective cohort study involving 709 patients undergoing elective orthopedic surgery with hardware implantation, the SSI rate was reduced in patients who were decolonized (chlorhexidine washcloths, oral rinse, and intranasal povidone-iodine) compared with those who were not (1.1 versus 3.8 percent) [85].
A large multicenter study of patients undergoing cardiac or orthopedic surgical procedures compared the rates of S. aureus SSI prior to and after implementation of a preventive intervention bundle, which included S. aureus screening, decolonization, and targeted preoperative antimicrobial prophylaxis [73]. The mean rate of deep incisional or organ space S. aureus infection was lower during the intervention compared with the preintervention period (21 versus 36 cases per 10,000 operations). However, the adherence rate to the full bundle was only 39 percent, neither patients nor facilities were randomized, and some patient characteristics (including age and comorbidities) differed between the groups.
Another trial noted that combined use of topical mupirocin and preoperative chlorhexidine bathing was associated with a more than twofold reduction in the risk for postoperative infection due to S. aureus and a nearly fivefold reduction in the risk for deep incisional SSI due to S. aureus; however, this study was performed in a setting with high baseline SSI rates and in the absence of endemic problems with infections due to MRSA [72].
Although decolonization may be beneficial in some settings, it is uncertain whether universal S. aureus decolonization of all surgical patients or targeted screening for S. aureus carriage and decolonization of positively screened patients is preferred. As an example, nares screening may miss as many as 20 percent of patients with S. aureus colonization [97,98]. The use of one mathematical model suggested that universal decolonization with mupirocin may be associated with an equally low risk of S. aureus mupirocin resistance as targeted decolonization [99]. In addition, mupirocin resistance has been associated with decolonization failure. In a case-control study including 150 patients, carriage of methicillin-resistant S. aureus (MRSA) with low-level mupirocin and chlorhexidine resistance was independently associated with persistent carriage of MRSA after treatment [100].
There are no standardized decolonization regimens; many studies have used mupirocin (2% mupirocin nasal ointment to nares twice daily for five days) and chlorhexidine (2% chlorhexidine gluconate wash daily for five days). Other regimens include povidone-iodine and alcohol-based nasal solutions; further study regarding the role of these agents for prevention of SSI is needed.
Skin antisepsis — Routine application of antiseptics to the skin prior to incision should be performed prior to surgery to reduce the burden of skin flora [3,4]. However, no topical antiseptic agent can fully eradicate skin bacteria since organisms also reside in hair follicles and sebaceous glands [101].
We recommend using chlorhexidine/alcohol-based skin antiseptics for routine skin preparation of patients undergoing surgery. Based upon several meta-analyses for clean and clean-contaminated surgery (table 3), preoperative skin cleansing with chlorhexidine/alcohol-based preparations is favored over povidone-iodine preparations [102-104]. For example, the results of one meta-analysis of nine trials involving 2479 individuals who developed 189 SSIs (8 percent SSI rate) favored chlorhexidine-containing products over iodophor-containing products (RR 0.70; 95% CI, 0.52-0.92 [102]). Chlorhexidine may be superior to iodine because chlorhexidine is not inactivated by blood or serum [105].
When chlorhexidine/alcohol preparations are unable to be used, we suggest using povidone-iodine preparations as a replacement. Most trials comparing chlorhexidine to iodophors have been confounded by the use of alcohol (another type of antiseptic) with the chlorhexidine-based products, which could bias trial results in favor of chlorhexidine. One meta-analysis attempted to address this issue by only examining outcomes of trials in which alcohol was combined with both products. A total of five trials involving 723 patients with 30 infections were included. No difference in outcomes was found; however, the small sample sizes of the five trials were an acknowledged limitation (RR 1.14; 95% CI, 0.55-2.34 in favor of iodophor plus alcohol). Subsequent to the aforementioned meta-analyses, a large randomized trial in seven low-resource countries of 2923 individuals with 454 SSIs found no difference in SSI rates for chlorhexidine/alcohol versus povidone-iodine without alcohol (for clean-contaminated surgery, RR 0.97; 95% CI, 0.82-1.14) [106]. The high overall SSI rate for clean-contaminated surgeries (15 percent) in this study and other differences between low- and high-resource settings may not make these findings generalizable to high-resource settings [106]. In a randomized trial of that included over 1500 patients with closed fractures requiring surgical repair, patients who received skin preps with alcohol and an iodine-based prep (iodine povacrylex) had similar rates of postoperative infection compared with patients who received chlorhexidine plus alcohol (2.4 compared with 3.3 percent, respectively; OR, 0.74; 95% CI, 0.55-1.0) [107].
Interventions that do not appear to reduce the likelihood of SSI include applying skin preparation agents in concentric circles (rather than horizontal preparation), use of surgical site markers, and use of antimicrobial sealants for skin preparation prior to surgery [3,108-110].
Vaginal preparation prior to gynecologic surgery is discussed separately. (See "Gynecologic surgery: Overview of preoperative evaluation and preparation", section on 'Vaginal preparation'.)
Hair removal — Shaving hair with razors at the planned operative site should be avoided; if hair removal is absolutely necessary, it may be performed with clippers or depilatory agents. Preoperative hair removal has been associated with an increased risk for SSI [111-113].
One meta-analysis including 19 trials concluded no hair removal was associated with a significantly lower risk of SSI compared with hair removal via shaving (relative risk [RR] 0.56, 95% CI 0.34 to 0.96) [113]. Of hair removal methods, shaving was associated with the highest risk of SSI, followed by clipping and depilatory creams. In one study, rates of SSI associated with shaving, clipping, or depilatory creams were 5.6, 1.7, and 0.6 percent, respectively [112].
Scanning electron micrographs have demonstrated that razors cause gross skin cuts, and clippers cause less injury than razors; depilatory agents cause no injury to the skin surface [114]. The timing of hair removal is also important; the lowest rates of SSI have been observed when hair was removed just prior to the surgical incision [115].
OTHER PERIOPERATIVE MEASURES — Other perioperative measures such as maintaining normothermia, oxygenation, controlling glucose, minimizing red blood cell transfusion, limiting traffic through the operating room, and possibly the use of laminar flow in selected circumstances may reduce SSI.
Enhanced recovery after surgery (ERAS) programs and surgical safety checklists also help decrease the rates of postoperative complications, including SSI [116]. These are discussed in detail separately. (See "Patient safety in the operating room" and "Enhanced recovery after colorectal surgery".)
Maintain normothermia — pPerioperative hypothermia may increase risk for SSI by triggering vasoconstriction and reducing subcutaneous oxygen tension. On the other hand, it has also been suggested that hypothermia may protect tissue from ischemia by reducing oxygen consumption during surgery. Nonetheless, most surgeons, anesthesiologists, and hospital epidemiologists acknowledge the benefit of perioperative normothermia for reducing the risk of SSI [4]. However, the optimal approach to thermoregulation in surgery is uncertain.
The authors of a systematic review identified two randomized trials evaluating the effects of hypothermia and SSI [117]. The pooled odds ratio for SSI for hypothermia compared with normothermia was 1.6 (95% CI 1.14-2.23). The inclusion of nonrandomized trials in the analysis led to nonsignificant differences. One of the trials included 200 patients undergoing colorectal surgery [118]. The rates of SSI in the normothermia group compared with the hypothermia group were 6 versus 19 percent, respectively, and in the other trial that included 421 clean surgical procedures, wound infection was less frequent among those who were warmed before surgery (5 versus 14 percent) [119].
Limit traffic through operating room — The number of people in the operating room and the number of door openings should be limited to only those that are essential. Observational studies of cardiac and orthopedic surgery suggest that excess traffic through the operating room impacts the incidence of SSI [120-122]. The number of people in the operating room and the number of door openings are related to the number of airborne particulates [120,121]. Microorganisms causing SSI after implant surgical infections can be recovered from the ambient air during surgical procedures [123,124].
Use of laminar airflow — Laminar air flow is designed to move particle-free air over the aseptic operating field at a uniform velocity (vertically or horizontally). Use of laminar airflow has been proposed as a means of reducing the burden of microorganisms in the operating room for patients undergoing implantation of prosthetic material; however, there is insufficient evidence supporting its routine use [3,121,125].
The risk of SSI is increased among patients undergoing implantation of prosthetic material because the minimum inoculum of organisms for producing a SSI is markedly reduced in this setting [126]. Early trials suggested that laminar air flow in the operating room reduced contamination of open incisions, but this has not uniformly translated into a reduced incidence of deep incisional SSI [127-129]. A systematic review that included 12 observational studies (performed between 1987 and 2011) [130] did not find any benefit for laminar airflow for reducing the incidence of deep incisional SSI following hip arthroplasty (8 studies [131-137]), knee arthroplasty (6 studies [131,135-139]), or abdominal/open vascular surgery (3 studies [131,140,141]).
The use of a novel air barrier system filters ambient air through highly effective filters and then directs this filtered air over the wound surface. In a trial involving 294 patients, this barrier system significantly reduced the risk of SSI after implant surgery [142]. This study also showed that the density of airborne microorganism was four times higher in procedures that resulting in an implant infection.
Supplemental oxygen — The use of high-inspired (supplemental) oxygen perioperatively may also be associated with decreased rates of SSI, but robust evidence is lacking [143]. Issues related to perioperative oxygenation are discussed separately. (See "Mechanical ventilation during anesthesia in adults", section on 'Fraction of inspired oxygen'.)
Minimize red cell transfusion — Red cell transfusions are associated with increased SSI rates among hospitalized patients [144]. Compared with more liberal transfusion strategies, restrictive transfusion (ie, at a lower hemoglobin level) reduces the risk of SSI. Transfusion thresholds and other operative strategies to minimize blood loss are discussed separately. (See "Indications and hemoglobin thresholds for RBC transfusion in adults" and "Surgical blood conservation: Intraoperative blood salvage" and "Surgical blood conservation: Acute normovolemic hemodilution".)
Glucose control — Perioperative hyperglycemia has been associated with an increased risk of infection. Issues related to perioperative glucose control are discussed separately. (See "Perioperative management of blood glucose in adults with diabetes mellitus", section on 'Glycemic targets' and "Perioperative management of blood glucose in adults with diabetes mellitus", section on 'Postoperative'.)
SURGICAL TECHNIQUE — Various forms of topical and local antibiotic delivery and barrier devices to protect the wound have been used to reduce the risk of SSI.
While good surgical technique may help reduce SSI, there is minimal evidence to support a direct link between a specific technique and the risk of a SSI. Practices such as gentle traction, effective hemostasis, removal of devitalized tissues, minimization of electrocautery to avoid thermal spread, obliteration of dead space, irrigation of tissues with saline to avoid excessive drying, wound closure without tension to avoid ischemia, and judicious use of closed-suction drains are widely recommended even though there is no published evidence to document or quantitate their benefit [4,145]. (See "Principles of abdominal wall closure".)
Topical and local antibiotic delivery — Various topical and local antibiotic delivery methods have been used to reduce the incidence of SSI, including topical antimicrobial agents used as cavitary irrigation solutions or to irrigate the subcutaneous or deeper tissues, antimicrobial dressings, antimicrobial-coated sutures, and antibiotic-impregnated implants. However, the evidence for benefit of these measures is mostly low-quality [146-149].
Topical antiseptics — Topical agents (ie, ointments, gels, solutions, powders, antimicrobial dressing) applied to the closed surgical incision do not appear to prevent SSI [146,150].
The benefits versus risk remain uncertain regarding intraoperative antiseptic irrigation (eg, intracavitary, subcutaneous or deep tissues) for the prevention of SSI in most circumstances [7,151-166]. If antiseptic agents are used for irrigation, they must be prepared and delivered using sterile methods.
●Antibacterial irrigation had no significant effect in reducing SSIs (OR 1.16, 95% CI 0.64-2.12) in one systematic review. However, a subgroup analysis showed benefit of aqueous povidone-iodine solution for incisional wound irrigation of clean and clean-contaminated wounds (odds ratio [OR] 0.31, 95% CI 0.13-0.73; 50 fewer SSIs per 1000 procedures, 95% CI 19-64) [162].
●A second systematic review and meta-analysis evaluated the use of intracavitary and wound irrigation. There was no difference in outcome between irrigation with no irrigation. However, the risk of SSI was lower in those treated with antibacterial irrigation compared with non-antibacterial irrigation (relative risk [RR] 0.57, 95% CI 0.44-0.75) [163].
The efficacy of various antiseptic agents applied to open wounds (contaminated, dirty) to reduce infection is not well studied. Trials available evaluating preparation prior to open fracture fixation are reviewed separately. (See "Surgical management of severe lower extremity injury", section on 'Limb preparation and skin antisepsis'.)
Antibiotic-impregnated implants — Antibiotic-impregnated implants providing local delivery of antibiotics to a surgical site have been advocated to reduce the incidence of SSI. Hydrogels, bone cements, and polymer beads have been impregnated with antibiotics to provide a local-release mechanism [167-170]. In spite of a wide array of delivery systems in development, few have found their way into routine clinical practice. Antibiotic-impregnated cement for prevention of prosthetic joint infection is discussed separately. (See "Prevention of prosthetic joint and other types of orthopedic hardware infection", section on 'Local antibiotic delivery'.)
We do not favor routine use of gentamicin-collagen implants for prevention of SSI. Use of these devices has been studied at several surgical incision sites including the sternum, abdomen, breast, groin, perineum, and others. Gentamicin has almost no activity against gram-positive organisms, a common cause of SSI, and no anaerobic activity. Some trials have claimed a benefit for gentamicin-collagen implants, while others have demonstrated harm (ie, increased rate of SSI), and overall the use of collagen-gentamicin implants remains controversial [171].
Antimicrobial-coated sutures — The use of antimicrobial-coated sutures may be associated with a reduced risk of SSI; however, the data are limited and of low quality [172-176]. The specific use of these sutures in the setting of abdominal wall closure is reviewed separately. (See "Principles of abdominal wall closure", section on 'Triclosan-coated versus noncoated sutures'.)
Whether the specific type of suture used (mono- versus polyfilament, coated versus uncoated) reduces the risk of abdominal wound complications or site infection is discussed in detail separately. (See "Principles of abdominal wall closure", section on 'Sutures'.)
Intraoperative wound protectors — There is some evidence that wound protectors used during surgery can reduce the rate of SSI.
Wound protectors, which are devices used during the course of the surgery and designed to protect the abdominal wound edges from trauma and contamination, are warranted for prevention of SSI in the setting of biliary and abdominal procedures [3,177]. Once the incision is made, the wound protector is placed into the wound to provide atraumatic tissue retraction, and it provides a barrier to keep the wound edges from drying out [178-182].
A systematic review identified 14 randomized trials that included 2684 patients. The use of a wound protector reduced the risk of SSI compared with standard care (15 versus 21 percent; RR 0.70, 95% CI 0.51-0.96) [183]. A dual ring was more effective compared with a single ring device (4.4 versus 17.8 percent; RR 0.31, 95% CI 0.15-0.58).These results are consistent with other meta-analyses and later trials [177,183-187] and support the use of an abdominal wound protector to help prevent abdominal SSI.
Prophylactic negative pressure wound therapy — Some wound dressings, specifically negative pressure wound therapy, placed over certain closed surgical wounds can reduce the rate of SSI [188]. For other types of wound dressings, low-quality evidence suggests no significant impact on the incidence of SSI [189]. (See "Basic principles of wound management", section on 'Wound dressings'.)
Negative pressure wound therapy has been applied to a variety of closed surgical wounds as a measure to prevent SSI. Efficacy has been demonstrated for some, but not all, surgical sites. Further discussion is found elsewhere. (See "Negative pressure wound therapy", section on 'Prophylactic use' and "Principles of abdominal wall closure", section on 'Negative pressure dressings'.)
SOCIETY GUIDELINE LINKS — Links to society and government-sponsored guidelines from selected countries and regions around the world are provided separately. (See "Society guideline links: Prevention of surgical site infections in adults".)
SUMMARY AND RECOMMENDATIONS
●Infection control – The most important factors for prevention of surgical site infection (SSI) are timely administration of effective preoperative antibiotics and careful attention to other perioperative control measures. Careful infection control is essential; interventions include hand hygiene and use of gloves and other barrier devices (masks, caps, gowns, drapes, and shoe covers) by all operating room personnel. Application of antiseptics to the skin is warranted to reduce the burden of skin flora. (See 'Infection control' above.)
●Timing of surgery – Patients with evidence of active infection prior to elective surgical procedures should complete treatment for the infection prior to surgery, particularly in circumstances when placement of prosthetic material is anticipated. For circumstances in which urgent surgery is required, the risk of infection must be weighed with the timing of surgical intervention on an individual basis. (See 'Surgical planning' above.)
●Staphylococcus aureus decolonization – While the optimal approach to S. aureus screening and decolonization remains uncertain, preoperative S. aureus decolonization may be reasonable for surgical patients known to be nasal carriers of S. aureus or for patients with a high risk of negative outcomes should S. aureus infection develop at the surgical site (eg, cardiothoracic surgery, orthopedic procedures with hardware implantation, patients who are immunocompromised). We increasingly favor universal decolonization of these patients to avoid pitfalls of screening. (See 'S. aureus decolonization' above.)
●Surgical technique – Wound protectors reduce the risk of abdominal SSI and are warranted for prevention of SSI in the setting of clean-contaminated, contaminated, and dirty abdominal procedures. Minimally invasive and laparoscopic-assisted procedures are generally associated with lower rates of SSI compared with open surgery. (See 'Surgical technique' above.)
●Other interventions – Perioperative normothermia appears to be better than hypothermia for reducing the risk of SSI. The use of high-inspired (supplemental) oxygen perioperatively is also associated with decreased rates of SSI. There is insufficient evidence for routine use of preoperative hair removal or laminar airflow for reducing the risk of SSI. (See 'Other perioperative measures' above.)
آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟