ﺑﺎﺯﮔﺸﺖ ﺑﻪ ﺻﻔﺤﻪ ﻗﺒﻠﯽ
خرید پکیج
تعداد آیتم قابل مشاهده باقیمانده : 3 مورد
نسخه الکترونیک
medimedia.ir

Apalutamide: Drug information

Apalutamide: Drug information
(For additional information see "Apalutamide: Patient drug information")

For abbreviations, symbols, and age group definitions used in Lexicomp (show table)
Brand Names: US
  • Erleada
Brand Names: Canada
  • Erleada
Pharmacologic Category
  • Antineoplastic Agent, Antiandrogen
Dosing: Adult

Note: Optimize management of cardiovascular risk factors (including hypertension, diabetes, or dyslipidemia) prior to and during treatment.

Prostate cancer, metastatic, castration sensitive

Prostate cancer, metastatic, castration sensitive: Oral: 240 mg once daily (in combination with continuous androgen deprivation therapy); continue until disease progression or unacceptable toxicity (Ref). Note: Continuous androgen deprivation therapy is either treatment with a concurrent gonadotropin-releasing hormone analog agonist/antagonist or prior bilateral orchiectomy.

Prostate cancer, nonmetastatic, castration resistant

Prostate cancer, nonmetastatic, castration resistant: Oral: 240 mg once daily (in combination with continuous androgen deprivation therapy); continue until disease progression or unacceptable toxicity (Ref). Note: Continuous androgen deprivation therapy is either treatment with a concurrent gonadotropin-releasing hormone analog agonist/antagonist or prior bilateral orchiectomy.

Missed doses: If a daily dose is missed, administer as soon as possible on the same day and return to the normal dosing schedule the following day; do not administer extra tablets to make up a missed dose.

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Kidney Impairment: Adult

Note: Renal function estimated by the modification of diet in renal disease (MDRD) equation.

eGFR 30 to 89 mL/minute/1.73 m2: There are no dosage adjustments provided in the manufacturer's labeling. However, no clinically significant pharmacokinetic differences were observed in mild or moderate renal impairment; therefore, dosage adjustment is not likely necessary.

eGFR ≤29 mL/minute/1.73 m2: There are no dosage adjustments provided in the manufacturer's labeling (effect on apalutamide pharmacokinetics is unknown).

Dosing: Hepatic Impairment: Adult

Mild to moderate impairment (Child-Pugh classes A and B): There are no dosage adjustments provided in the manufacturer's labeling. However, no clinically significant pharmacokinetic differences were observed in mild or moderate hepatic impairment; therefore, dosage adjustment is not likely necessary.

Severe impairment (Child-Pugh class C): There are no dosage adjustments provided in the manufacturer's labeling (effect on apalutamide pharmacokinetics is unknown).

Dosing: Adjustment for Toxicity: Adult

Grade 3 or higher toxicity (or intolerable adverse reactions): Withhold apalutamide until symptoms improve to baseline or to grade 1 or lower, then resume either at the same dose or (if warranted) with the dose reduced to 180 mg or 120 mg.

Cerebrovascular and ischemic cardiovascular events, grade 3 or 4: Consider permanently discontinuing apalutamide.

Dermatologic toxicity:

Severe cutaneous adverse reactions: If a severe cutaneous adverse reaction (SCAR) is suspected, withhold apalutamide until the etiology of the reaction has been identified; consultation with a dermatologist is recommended. Permanently discontinue apalutamide for confirmed SCARs.

Rash: Rash may be managed with oral antihistamines and topical corticosteroids; some patients may require systemic corticosteroids. May require apalutamide treatment interruption and/or dose reduction.

Other grade 4 skin reactions: Permanently discontinue apalutamide.

Fracture: Patients at risk for fractures should be managed according to established management guidelines; consider the use of bone-modifying agents.

Seizure: Permanently discontinue if seizure develops during apalutamide treatment.

Thyroid dysfunction: May require thyroid replacement therapy; if clinically indicated, thyroid replacement therapy should be initiated and/or dose-adjusted.

Dosing: Older Adult

Refer to adult dosing.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified. Reported adverse reactions are for adults.

>10%:

Cardiovascular: Hypertension (18% to 25%), peripheral edema (11%)

Dermatologic: Pruritus (6% to 11%), skin rash (25% to 28%; including maculopapular rash)

Endocrine & metabolic: Hot flash (14% to 23%), hypercholesterolemia (76%), hyperglycemia (70%), hyperkalemia (32%), hypertriglyceridemia (17% to 67%), increased thyroid stimulating hormone level (25%), weight loss (16%)

Gastrointestinal: Decreased appetite (12%), diarrhea (9% to 20%; grades 3/4: 1%), nausea (18%)

Hematologic & oncologic: Anemia (70%; grades 3/4: <1%), leukopenia (47%; grades 3/4: <1%), lymphocytopenia (41%; grades 3/4: 2%)

Nervous system: Falling (16%), fatigue (39%)

Neuromuscular & skeletal: Arthralgia (16% to 17%), bone fracture (9% to 12%)

1% to 10%:

Cardiovascular: Heart failure (2%), ischemic heart disease (4%)

Endocrine & metabolic: Hypothyroidism (4% to 8%)

Gastrointestinal: Dysgeusia (3%)

Nervous system: Cerebrovascular disease (3%)

Neuromuscular & skeletal: Muscle spasm (3%)

<1%: Nervous system: Seizure

Postmarketing:

Dermatologic: Stevens-Johnson syndrome, toxic epidermal necrolysis

Hypersensitivity: Drug reaction with eosinophilia and systemic symptoms

Respiratory: Interstitial lung disease

Contraindications

There are no contraindications listed in the manufacturer's US labeling.

Canadian labeling: Hypersensitivity to apalutamide or any component of the formulation; use in females who are or may become pregnant.

Warnings/Precautions

Concerns related to adverse effects:

• Cardiac events: Cerebrovascular and ischemic cardiovascular events (including fatal events) have been observed with apalutamide. Patients with history of unstable angina, myocardial infarction, heart failure, stroke, or transient ischemic attack (within 6 months of randomization) were excluded from clinical trials. Based on exposure-QT analysis in an uncontrolled, single-arm, dedicated QTc interval assessment study, a concentration-dependent increase in QTcF was noted with apalutamide (and the active metabolite). The maximum mean QTcF change from baseline was 12.4 msec.

• Dermatologic toxicity: Life-threatening (and fatal) cases of severe cutaneous adverse reactions, including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms, have occurred. Rashes (usually macular or maculo-papular) were reported in nearly one-fourth of patients who received apalutamide; including some that were grade 3. Rash onset usually occurred at median of 83 days and typically resolved within a median of 78 days in most patients. Rash recurred in over half of patients who were rechallenged with apalutamide.

• Falls: Evaluate patients for fall risk. Falls have occurred in patients receiving apalutamide; elderly patients are at increased risk for falls.

• Fractures: Fractures have occurred in patients receiving apalutamide. Grade 3 or 4 fractures have been reported. In clinical studies, the median time to onset of fracture was ~2 to 10 months (range: 2 to 953 days); the studies did not perform routine bone density assessments or osteoporosis treatment with bone-modifying agents.

• Seizures: Seizures occurred in patients receiving apalutamide. It is not known if antiseizure medications can prevent apalutamide-related seizures. In clinical studies, a small number of patients experienced seizures, with the onset occurring from ~5 to 22 months after treatment initiation. Patients with a history of seizure, predisposing factors for seizure, or receiving medications known to reduce seizure threshold or to induce seizures were excluded from the studies. There is no experience in reinitiating apalutamide in patients who experienced a seizure. Advise patients of the risk of seizures during apalutamide treatment and of the risk of engaging in activities where sudden loss of consciousness could cause serious harm to themselves or others.

• Thyroid dysfunction: Hypothyroidism and elevated thyroid stimulating hormone (TSH) have been reported with apalutamide; the median onset was ~4 months (there were no grade 3 or 4 hypothyroid events). Thyroid replacement therapy was initiated in some patients.

Disease-related concerns:

• Cardiovascular disease: Androgen-deprivation therapy may increase the risk for cardiovascular disease (Levine 2010).

Special populations:

• Older adult: Patients ≥65 years of age experienced an increased incidence of falls and grade 3 or 4 adverse reactions (compared to patients <65 years of age).

Dosage Forms: US

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Erleada: 60 mg, 240 mg

Generic Equivalent Available: US

No

Pricing: US

Tablets (Erleada Oral)

60 mg (per each): $142.03

240 mg (per each): $568.10

Disclaimer: A representative AWP (Average Wholesale Price) price or price range is provided as reference price only. A range is provided when more than one manufacturer's AWP price is available and uses the low and high price reported by the manufacturers to determine the range. The pricing data should be used for benchmarking purposes only, and as such should not be used alone to set or adjudicate any prices for reimbursement or purchasing functions or considered to be an exact price for a single product and/or manufacturer. Medi-Span expressly disclaims all warranties of any kind or nature, whether express or implied, and assumes no liability with respect to accuracy of price or price range data published in its solutions. In no event shall Medi-Span be liable for special, indirect, incidental, or consequential damages arising from use of price or price range data. Pricing data is updated monthly.

Dosage Forms: Canada

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Erleada: 60 mg, 240 mg

Prescribing and Access Restrictions

Apalutamide is available through a specialty pharmacy network. Refer to https://www.janssencarepath.com/hcp/erleada or call 877-227-3728 for more information.

Administration: Adult

Oral: Administer at the same time each day, either with or without food. Swallow tablets whole; do not crush or split.

For patients unable to swallow whole tablet(s):

240 mg tablet: Place whole 240 mg tablet in a cup (do not crush or split tablet). Add ~10 mL noncarbonated water, making sure tablet is completely immersed in the water. Wait 2 minutes until the tablet is broken up and spread out, then stir the mixture. Add 30 mL of orange juice, applesauce, or additional water and stir, then administer immediately. Rinse cup with additional water to make sure entire dose is administered and have patient drink immediately. Do not save apalutamide mixed with noncarbonated water, orange juice, or applesauce for later.

60 mg tablets: Mix whole tablets in 120 mL of applesauce by stirring into applesauce (do not crush or split tablets). Wait 15 minutes, stir mixture, wait another 15 minutes, and then stir mixture again until tablets are well mixed with no chunks remaining). Using a spoon, administer applesauce mixture immediately. Rinse container with 60 mL of water and have patient immediately drink the contents, repeat with a second 60 mL of water to ensure entire dose is administered. Do not store applesauce mixture for later use; mixture should be consumed within 1 hour of preparation.

For feeding tube administration (≥8 French): 240 mg tablet: Place one 240 mg tablet in the barrel of a syringe (use at least a 20 mL syringe that is appropriate for a feeding tube) and draw up 10 mL noncarbonated water into the syringe. Wait 10 minutes and then shake vigorously to completely disperse contents. Administer immediately through feeding tube. Refill syringe with noncarbonated water and administer; repeat until no tablet residue is left in syringe or feeding tube.

Hazardous Drugs Handling Considerations

This medication is not on the NIOSH (2016) list; however, it may meet the criteria for a hazardous drug. Apalutamide may cause reproductive toxicity, teratogenicity, and has a structural/toxicity profile similar to existing hazardous agents.

Use appropriate precautions for receiving, handling, storage, preparation, dispensing, transporting, administration, and disposal. Follow NIOSH and USP 800 recommendations and institution-specific policies/procedures for appropriate containment strategy (NIOSH 2016; USP-NF 2020).

Note: Facilities may perform risk assessment of some hazardous drugs to determine if appropriate for alternative handling and containment strategies (USP-NF 2020). Refer to institution-specific handling policies/procedures.

Use: Labeled Indications

Prostate cancer:

Treatment of metastatic, castration-sensitive prostate cancer.

Treatment of nonmetastatic, castration-resistant prostate cancer.

Medication Safety Issues
Sound-alike/look-alike issues:

Apalutamide may be confused with abiraterone, bicalutamide, darolutamide, dutasteride, enzalutamide, flutamide, nilutamide.

Metabolism/Transport Effects

Substrate of CYP2C8 (major), CYP3A4 (minor); Note: Assignment of Major/Minor substrate status based on clinically relevant drug interaction potential; Induces BCRP/ABCG2, CYP2C19 (strong), CYP2C9 (weak), CYP3A4 (strong), OATP1B1/1B3 (SLCO1B1/1B3), P-glycoprotein/ABCB1

Drug Interactions

Note: Interacting drugs may not be individually listed below if they are part of a group interaction (eg, individual drugs within “CYP3A4 Inducers [Strong]” are NOT listed). For a complete list of drug interactions by individual drug name and detailed management recommendations, use the Lexicomp drug interactions program by clicking on the “Launch drug interactions program” link above.

Abemaciclib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Abemaciclib. Risk X: Avoid combination

Abiraterone Acetate: CYP3A4 Inducers (Strong) may decrease the serum concentration of Abiraterone Acetate. Management: Avoid when possible. If the combination cannot be avoided, increase abiraterone acetate dosing frequency from once daily to twice daily during combined use. Reduce abiraterone dose back to the prior dose and frequency once strong inducer is discontinued. Risk D: Consider therapy modification

Abrocitinib: CYP2C19 Inducers (Strong) may decrease the serum concentration of Abrocitinib. Risk X: Avoid combination

Acalabrutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Acalabrutinib. Management: Avoid co-administration of strong CYP3A inducers in patients taking acalabrutinib. If strong CYP3A inducers cannot be avoided, increase the dose of acalabrutinib to 200 mg twice daily. Risk D: Consider therapy modification

Adagrasib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Adagrasib. Risk X: Avoid combination

Afatinib: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Afatinib. Management: Increase the afatinib dose by 10 mg as tolerated in patients requiring chronic coadministration of P-gp inducers with afatinib. Reduce afatinib dose back to the original afatinib dose 2 to 3 days after discontinuation of the P-gp inducer. Risk D: Consider therapy modification

Alfacalcidol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Alfacalcidol. Risk C: Monitor therapy

ALfentanil: CYP3A4 Inducers (Strong) may decrease the serum concentration of ALfentanil. Management: If concomitant use of alfentanil and strong CYP3A4 inducers is necessary, consider dosage increase of alfentanil until stable drug effects are achieved. Monitor patients for signs of opioid withdrawal. Risk D: Consider therapy modification

Aliskiren: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Aliskiren. Risk C: Monitor therapy

Alpelisib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Alpelisib. Risk X: Avoid combination

ALPRAZolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of ALPRAZolam. Risk C: Monitor therapy

Amiodarone: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Amiodarone. CYP3A4 Inducers (Strong) may decrease the serum concentration of Amiodarone. Risk C: Monitor therapy

AmLODIPine: CYP3A4 Inducers (Strong) may decrease the serum concentration of AmLODIPine. Risk C: Monitor therapy

Androgens: Hypertension-Associated Agents may enhance the hypertensive effect of Androgens. Risk C: Monitor therapy

Antihepaciviral Combination Products: CYP3A4 Inducers (Strong) may decrease the serum concentration of Antihepaciviral Combination Products. Risk X: Avoid combination

Apixaban: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Apixaban. Risk X: Avoid combination

Apremilast: CYP3A4 Inducers (Strong) may decrease the serum concentration of Apremilast. Risk X: Avoid combination

Aprepitant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Aprepitant. Risk X: Avoid combination

ARIPiprazole: CYP3A4 Inducers (Strong) may decrease the serum concentration of ARIPiprazole. Management: For indications other than major depressive disorder: double the oral aripiprazole dose over 1 to 2 weeks and closely monitor. Avoid use of strong CYP3A4 inducers for more than 14 days with extended-release injectable aripiprazole. Risk D: Consider therapy modification

ARIPiprazole Lauroxil: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of ARIPiprazole Lauroxil. Management: Patients taking the 441 mg dose of aripiprazole lauroxil increase their dose to 662 mg if used with a strong CYP3A4 inducer for more than 14 days. No dose adjustment is necessary for patients using the higher doses of aripiprazole lauroxil. Risk D: Consider therapy modification

Artemether and Lumefantrine: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Artemether and Lumefantrine. Specifically, concentrations of dihydroartemisinin (DHA), the active metabolite of artemether may be decreased. CYP3A4 Inducers (Strong) may decrease the serum concentration of Artemether and Lumefantrine. Risk X: Avoid combination

Asunaprevir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Asunaprevir. Risk X: Avoid combination

Atazanavir: May increase the serum concentration of Apalutamide. Apalutamide may decrease the serum concentration of Atazanavir. Risk X: Avoid combination

Atogepant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Atogepant. Management: For treatment of episodic migraine, the recommended dose of atogepant is 30 mg once daily or 60 mg once daily when combined with CYP3A4 inducers. When used for treatment of chronic migraine, use of atogepant with CYP3A4 inducers should be avoided. Risk D: Consider therapy modification

Atorvastatin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Atorvastatin. Risk C: Monitor therapy

Avacopan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Avacopan. Risk X: Avoid combination

Avanafil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Avanafil. Risk X: Avoid combination

Avapritinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Avapritinib. Risk X: Avoid combination

Axitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Axitinib. Risk X: Avoid combination

Barnidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Barnidipine. Risk C: Monitor therapy

Bedaquiline: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Bedaquiline. CYP3A4 Inducers (Strong) may decrease the serum concentration of Bedaquiline. Risk X: Avoid combination

Belumosudil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Belumosudil. Management: Increase the dose of belumosudil to 200 mg twice daily when coadministered with strong CYP3A4 inducers. Risk D: Consider therapy modification

Benidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Benidipine. Risk C: Monitor therapy

Benperidol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Benperidol. Risk C: Monitor therapy

Benzhydrocodone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Risk C: Monitor therapy

Berotralstat: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Berotralstat. Risk X: Avoid combination

Betamethasone (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Betamethasone (Systemic). Risk C: Monitor therapy

Bictegravir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bictegravir. Risk C: Monitor therapy

Bisoprolol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bisoprolol. Risk C: Monitor therapy

Blonanserin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Blonanserin. Risk C: Monitor therapy

Bortezomib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bortezomib. Risk X: Avoid combination

Bosutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bosutinib. Risk X: Avoid combination

Brentuximab Vedotin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Brentuximab Vedotin. Specifically, concentrations of the active monomethyl auristatin E (MMAE) component may be decreased. Risk C: Monitor therapy

Brexpiprazole: CYP3A4 Inducers (Strong) may decrease the serum concentration of Brexpiprazole. Management: If brexpiprazole is used together with a strong CYP3A4 inducer, the brexpiprazole dose should gradually be doubled over the course of 1 to 2 weeks. Decrease brexpiprazole to original dose over 1 to 2 weeks if the strong CYP3A4 inducer is discontinued. Risk D: Consider therapy modification

Brigatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Brigatinib. Risk X: Avoid combination

Brivaracetam: CYP2C19 Inducers (Strong) may decrease the serum concentration of Brivaracetam. Management: Increase the brivaracetam dose by up to 100% (ie, double the dose) if used with rifampin and consider the same dose adjustment if used with other strong CYP2C19 inducers. Monitor for reduced brivaracetam efficacy. Risk D: Consider therapy modification

Bromocriptine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bromocriptine. Risk C: Monitor therapy

Bromperidol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Bromperidol. Risk C: Monitor therapy

Brotizolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Brotizolam. Risk C: Monitor therapy

Buprenorphine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Buprenorphine. Risk C: Monitor therapy

BusPIRone: CYP3A4 Inducers (Strong) may decrease the serum concentration of BusPIRone. Management: Consider alternatives to this combination. If coadministration of these agents is deemed necessary, monitor patients for reduced buspirone effects and increase buspirone doses as needed. Risk D: Consider therapy modification

Butorphanol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Butorphanol. Risk C: Monitor therapy

Cabazitaxel: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cabazitaxel. Risk C: Monitor therapy

Cabozantinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cabozantinib. Management: Avoid use of strong CYP3A4 inducers with cabozantinib if possible. If combined, increase cabozantinib capsules (Cometriq) by 40 mg from previous dose, max 180 mg daily. Increase cabozantinib tablets (Cabometyx) by 20 mg from previous dose, max 80 mg daily Risk D: Consider therapy modification

Calcifediol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Calcifediol. Risk C: Monitor therapy

Calcitriol (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Calcitriol (Systemic). Risk C: Monitor therapy

Cannabidiol: CYP2C19 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Cannabidiol. CYP2C19 Inducers (Strong) may decrease the serum concentration of Cannabidiol. Risk C: Monitor therapy

Cannabis: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cannabis. More specifically, tetrahydrocannabinol and cannabidiol serum concentrations may be decreased. Risk C: Monitor therapy

Capivasertib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Capivasertib. Risk X: Avoid combination

Capmatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Capmatinib. Risk X: Avoid combination

CarBAMazepine: CYP3A4 Inducers (Strong) may decrease the serum concentration of CarBAMazepine. Risk C: Monitor therapy

Cariprazine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cariprazine. Risk X: Avoid combination

Carisoprodol: CYP2C19 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Carisoprodol. CYP2C19 Inducers (Strong) may decrease the serum concentration of Carisoprodol. Risk C: Monitor therapy

Celiprolol: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Celiprolol. Risk C: Monitor therapy

Ceritinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ceritinib. Risk X: Avoid combination

ChlorproPAMIDE: CYP3A4 Inducers (Strong) may decrease the serum concentration of ChlorproPAMIDE. Risk C: Monitor therapy

Choline C 11: Antiandrogens may diminish the therapeutic effect of Choline C 11. Risk C: Monitor therapy

Cilnidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cilnidipine. Risk C: Monitor therapy

Citalopram: CYP3A4 Inducers (Strong) may decrease the serum concentration of Citalopram. Risk C: Monitor therapy

Cladribine: BCRP/ABCG2 Inducers may decrease the serum concentration of Cladribine. Risk C: Monitor therapy

Cladribine: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Cladribine. Risk C: Monitor therapy

Clarithromycin: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Clarithromycin. CYP3A4 Inducers (Strong) may decrease the serum concentration of Clarithromycin. Management: Consider alternative antimicrobial therapy for patients receiving a CYP3A4 inducer. Drugs that enhance the metabolism of clarithromycin into 14-hydroxyclarithromycin may alter the clinical activity of clarithromycin and may impair clarithromycin efficacy. Risk D: Consider therapy modification

Clindamycin (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Clindamycin (Systemic). Risk C: Monitor therapy

ClonazePAM: CYP3A4 Inducers (Strong) may decrease the serum concentration of ClonazePAM. Risk C: Monitor therapy

Clopidogrel: CYP2C19 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Clopidogrel. Management: Consider alternatives to this combination when possible. If combined, monitor for increased clopidogrel effects and toxicities (eg, bleeding) if clopidogrel is combined with a strong CYP2C19 inducer. Risk D: Consider therapy modification

CloZAPine: CYP3A4 Inducers (Strong) may decrease the serum concentration of CloZAPine. Management: Avoid use with strong CYP3A4 inducers when possible. If combined, monitor patients closely and consider clozapine dose increases. Clozapine dose reduction and further monitoring may be required when strong CYP3A4 inducers are discontinued. Risk D: Consider therapy modification

Cobicistat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cobicistat. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced cobicistat efficacy. Risk D: Consider therapy modification

Cobimetinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cobimetinib. Risk X: Avoid combination

Codeine: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Codeine. Risk C: Monitor therapy

Colchicine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Colchicine. Risk C: Monitor therapy

Copanlisib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Copanlisib. Risk X: Avoid combination

Crizotinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Crizotinib. Risk X: Avoid combination

CycloSPORINE (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of CycloSPORINE (Systemic). Management: Monitor closely for reduced cyclosporine concentrations when combined with strong CYP3A4 inducers. Cyclosporine dose increases will likely be required to maintain adequate serum concentrations. Risk D: Consider therapy modification

CYP2C8 Inhibitors (Strong): May increase the serum concentration of Apalutamide. Risk C: Monitor therapy

CYP3A4 Inhibitors (Strong): May increase the serum concentration of Apalutamide. Risk C: Monitor therapy

Cyproterone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Cyproterone. Risk C: Monitor therapy

Dabigatran Etexilate: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Dabigatran Etexilate. Management: Avoid concurrent use of dabigatran with P-glycoprotein inducers whenever possible. Risk X: Avoid combination

Daclatasvir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Daclatasvir. Risk X: Avoid combination

Dapsone (Systemic): May enhance the adverse/toxic effect of CYP3A4 Inducers (Strong). CYP3A4 Inducers (Strong) may decrease the serum concentration of Dapsone (Systemic). Risk C: Monitor therapy

Daridorexant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Daridorexant. Risk X: Avoid combination

Darolutamide: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Darolutamide. Risk X: Avoid combination

Darunavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Darunavir. Risk C: Monitor therapy

Dasabuvir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Dasabuvir. Risk X: Avoid combination

Dasatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Dasatinib. Management: Avoid concurrent use of dasatinib with strong CYP3A4 inducers when possible. If such a combination cannot be avoided, consider increasing dasatinib dose and monitor clinical response and toxicity closely. Risk D: Consider therapy modification

Deflazacort: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Deflazacort. Risk X: Avoid combination

Delamanid: CYP3A4 Inducers (Strong) may decrease the serum concentration of Delamanid. Risk X: Avoid combination

Delavirdine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Delavirdine. Management: Consider avoiding this combination if possible. If concomitant use is necessary, monitor for decreased delavirdine concentrations and effects if coadministered with strong CYP3A4 inducers. Risk D: Consider therapy modification

DexAMETHasone (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of DexAMETHasone (Systemic). Management: Consider dexamethasone dose increases in patients receiving strong CYP3A4 inducers and monitor closely for reduced dexamethasone efficacy. Consider avoiding this combination when treating life threatening conditions (ie, multiple myeloma). Risk D: Consider therapy modification

Dexlansoprazole: CYP2C19 Inducers (Strong) may decrease the serum concentration of Dexlansoprazole. Risk X: Avoid combination

DiazePAM: CYP3A4 Inducers (Strong) may decrease the serum concentration of DiazePAM. Risk C: Monitor therapy

Dienogest: CYP3A4 Inducers (Strong) may decrease the serum concentration of Dienogest. Risk C: Monitor therapy

Digoxin: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Digoxin. Risk C: Monitor therapy

DilTIAZem: CYP3A4 Inducers (Strong) may decrease the serum concentration of DilTIAZem. Management: Consider alternatives to this combination when possible. If combined, monitor for decreased diltiazem efficacy. Risk D: Consider therapy modification

Disopyramide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Disopyramide. Risk C: Monitor therapy

DOCEtaxel: CYP3A4 Inducers (Strong) may decrease the serum concentration of DOCEtaxel. Risk C: Monitor therapy

Domperidone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Domperidone. Risk C: Monitor therapy

Doravirine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Doravirine. Risk X: Avoid combination

Doxercalciferol: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Doxercalciferol. Risk C: Monitor therapy

DOXOrubicin (Conventional): CYP3A4 Inducers (Strong) may decrease the serum concentration of DOXOrubicin (Conventional). Risk X: Avoid combination

DOXOrubicin (Conventional): P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of DOXOrubicin (Conventional). Risk X: Avoid combination

DroNABinol: CYP3A4 Inducers (Strong) may decrease the serum concentration of DroNABinol. Risk C: Monitor therapy

Dronedarone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Dronedarone. Risk X: Avoid combination

Duvelisib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Duvelisib. Risk X: Avoid combination

Dydrogesterone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Dydrogesterone. Risk C: Monitor therapy

Ebastine: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Ebastine. CYP3A4 Inducers (Strong) may decrease the serum concentration of Ebastine. Risk C: Monitor therapy

Edoxaban: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Edoxaban. Management: Avoid coadministration of edoxaban and P-glycoprotein (P-gp) inducers if possible. If concomitant use is required, be aware the edoxaban efficacy may be decreased. Risk D: Consider therapy modification

Efavirenz: CYP3A4 Inducers (Strong) may decrease the serum concentration of Efavirenz. Risk C: Monitor therapy

Elacestrant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elacestrant. Risk X: Avoid combination

Elagolix: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elagolix. Risk C: Monitor therapy

Elagolix, Estradiol, and Norethindrone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elagolix, Estradiol, and Norethindrone. Risk C: Monitor therapy

Elbasvir and Grazoprevir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elbasvir and Grazoprevir. Risk X: Avoid combination

Elexacaftor, Tezacaftor, and Ivacaftor: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elexacaftor, Tezacaftor, and Ivacaftor. Risk X: Avoid combination

Eliglustat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Eliglustat. Risk X: Avoid combination

Elvitegravir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Elvitegravir. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced elvitegravir efficacy. Risk D: Consider therapy modification

Encorafenib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Encorafenib. Risk X: Avoid combination

Enfortumab Vedotin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Enfortumab Vedotin. Specifically, concentrations of the active monomethyl auristatin E (MMAE) component may be decreased. Risk C: Monitor therapy

Entrectinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Entrectinib. Risk X: Avoid combination

Enzalutamide: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Enzalutamide. CYP3A4 Inducers (Strong) may decrease the serum concentration of Enzalutamide. Management: Consider using an alternative agent that has no or minimal CYP3A4 induction potential when possible. If this combination cannot be avoided, increase the dose of enzalutamide from 160 mg daily to 240 mg daily. Risk D: Consider therapy modification

Eplerenone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Eplerenone. Risk C: Monitor therapy

Eravacycline: CYP3A4 Inducers (Strong) may decrease the serum concentration of Eravacycline. Management: Increase the eravacycline dose to 1.5 mg/kg every 12 hours when combined with strong CYP3A4 inducers. Risk D: Consider therapy modification

Erdafitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Erdafitinib. Risk X: Avoid combination

Erlotinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Erlotinib. Management: Avoid the combination of erlotinib and strong CYP3A4 inducers whenever possible. If this combination must be used, increase erlotinib dose by 50 mg increments every 2 weeks as tolerated, to a maximum of 450 mg/day. Risk D: Consider therapy modification

Escitalopram: CYP3A4 Inducers (Strong) may decrease the serum concentration of Escitalopram. Risk C: Monitor therapy

Esomeprazole: CYP2C19 Inducers (Strong) may decrease the serum concentration of Esomeprazole. Risk X: Avoid combination

Estazolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Estazolam. Risk C: Monitor therapy

Estrogen Derivatives: CYP3A4 Inducers (Strong) may decrease the serum concentration of Estrogen Derivatives. Risk C: Monitor therapy

Eszopiclone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Eszopiclone. Risk C: Monitor therapy

Ethosuximide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ethosuximide. Risk C: Monitor therapy

Etizolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Etizolam. Risk C: Monitor therapy

Etoposide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Etoposide. Management: When possible, seek alternatives to strong CYP3A4-inducing medications in patients receiving etoposide. If combined, monitor patients closely for diminished etoposide response and need for etoposide dose increases. Risk D: Consider therapy modification

Etoposide Phosphate: CYP3A4 Inducers (Strong) may decrease the serum concentration of Etoposide Phosphate. Management: When possible, seek alternatives to strong CYP3A4-inducing medications in patients receiving etoposide phosphate. If these combinations cannot be avoided, monitor patients closely for diminished etoposide phosphate response. Risk D: Consider therapy modification

Etoricoxib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Etoricoxib. Risk C: Monitor therapy

Etravirine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Etravirine. Risk X: Avoid combination

Everolimus: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Everolimus. Management: Afinitor: Double the everolimus daily dose, using increments of 5 mg or less, with careful monitoring; multiple increments may be necessary. Zortress: Avoid if possible and monitor for decreased everolimus concentrations if combined. Risk D: Consider therapy modification

Evogliptin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Evogliptin. Risk C: Monitor therapy

Exemestane: CYP3A4 Inducers (Strong) may decrease the serum concentration of Exemestane. Management: Increase the exemestane dose to 50 mg once daily in patients receiving concurrent strong CYP3A4 inducers. Monitor patients closely for evidence of toxicity or inadequate clinical response. Risk D: Consider therapy modification

Fedratinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Fedratinib. Risk X: Avoid combination

Felbamate: CYP3A4 Inducers (Strong) may decrease the serum concentration of Felbamate. Risk C: Monitor therapy

Felodipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Felodipine. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced felodipine efficacy and the need for felodipine dose increases. Risk D: Consider therapy modification

Fenfluramine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Fenfluramine. Management: Avoid concurrent use of strong CYP3A4 inducers with fenfluramine when possible. If combined use cannot be avoided, consider increasing the fenfluramine dose, but do not exceed the fenfluramine maximum daily dose. Risk D: Consider therapy modification

FentaNYL: CYP3A4 Inducers (Strong) may decrease the serum concentration of FentaNYL. Risk C: Monitor therapy

Fesoterodine: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Fesoterodine. Risk C: Monitor therapy

Fexinidazole: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Fexinidazole. Risk X: Avoid combination

Fexofenadine: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Fexofenadine. Risk C: Monitor therapy

Finerenone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Finerenone. Risk X: Avoid combination

Flibanserin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Flibanserin. Risk X: Avoid combination

Flotufolastat F18: Antiandrogens may diminish the diagnostic effect of Flotufolastat F18. Management: Therapies targeting the androgen pathway may result in changes in the uptake of flotufolastat F18 in prostate cancer. The impact of these therapies on the performance of flotufolastat F18 is unknown; consider use of alternative agents. Risk D: Consider therapy modification

Fosamprenavir: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Fosamprenavir. Risk C: Monitor therapy

Fosaprepitant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Fosaprepitant. Specifically, CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite aprepitant. Risk X: Avoid combination

Fosnetupitant: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Fosnetupitant. Risk X: Avoid combination

Fosphenytoin-Phenytoin: CYP2C19 Inducers (Strong) may decrease the serum concentration of Fosphenytoin-Phenytoin. Risk C: Monitor therapy

Fostamatinib: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Fostamatinib. Risk X: Avoid combination

Fostemsavir: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Fostemsavir. Risk X: Avoid combination

Fruquintinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Fruquintinib. Risk X: Avoid combination

Futibatinib: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Futibatinib. Risk X: Avoid combination

Gallium Ga 68 PSMA-11: Antiandrogens may diminish the therapeutic effect of Gallium Ga 68 PSMA-11. Management: Therapies targeting the androgen pathway may result in changes in the uptake of gallium Ga 68 PSMA-11 (gozetotide) in prostate cancer. The impact on the performance of gallium Ga 68 PSMA-11 (gozetotide) is unknown; consider use of alternative agents. Risk D: Consider therapy modification

Ganaxolone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ganaxolone. Management: Avoid concomitant use of ganaxolone and strong CYP3A4 inducers whenever possible. If combined, consider increasing the dose of ganaxolone, but do not exceed the maximum recommended daily dose. Risk D: Consider therapy modification

Gefitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Gefitinib. Management: In the absence of severe adverse reactions, increase the gefitinib dose to 500 mg daily in patients receiving strong CYP3A4 inducers; resume 250 mg dose 7 days after discontinuation of the strong inducer. Carefully monitor clinical response. Risk D: Consider therapy modification

Gemigliptin: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Gemigliptin. CYP3A4 Inducers (Strong) may decrease the serum concentration of Gemigliptin. Risk X: Avoid combination

Gepirone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Gepirone. Risk X: Avoid combination

Gilteritinib: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Gilteritinib. Risk X: Avoid combination

Glasdegib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Glasdegib. Risk X: Avoid combination

Glecaprevir and Pibrentasvir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Glecaprevir and Pibrentasvir. Risk C: Monitor therapy

GuanFACINE: CYP3A4 Inducers (Strong) may decrease the serum concentration of GuanFACINE. Management: Increase extended-release guanfacine dose by up to double when initiating guanfacine in patients taking CYP3A4 inducers or if initiating a CYP3A4 inducer in a patient already taking extended-release guanfacine. Monitor for reduced guanfacine efficacy. Risk D: Consider therapy modification

Haloperidol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Haloperidol. Risk C: Monitor therapy

Hormonal Contraceptives: CYP3A4 Inducers (Strong) may decrease the serum concentration of Hormonal Contraceptives. Management: Advise patients to use an alternative method of contraception or a back-up method during coadministration, and to continue back-up contraception for 28 days after discontinuing a strong CYP3A4 inducer to ensure contraceptive reliability. Risk D: Consider therapy modification

HYDROcodone: CYP3A4 Inducers (Strong) may decrease the serum concentration of HYDROcodone. Risk C: Monitor therapy

Hydrocortisone (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Hydrocortisone (Systemic). Risk C: Monitor therapy

Ibrexafungerp: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ibrexafungerp. Risk X: Avoid combination

Ibrutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ibrutinib. Risk X: Avoid combination

Idelalisib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Idelalisib. Risk X: Avoid combination

Ifosfamide: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Ifosfamide. CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Ifosfamide. Risk C: Monitor therapy

Imatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Imatinib. Management: Avoid use of imatinib and strong CYP3A4 inducers when possible. If such a combination must be used, increase imatinib dose by at least 50% and monitor the patient's clinical response closely. Doses up to 1200 mg/day (600 mg twice daily) have been used. Risk D: Consider therapy modification

Indinavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Indinavir. Management: Consider avoiding the combination of indinavir and strong CYP3A4 inducers whenever possible due to the risk for decreased indinavir concentrations, reduced efficacy, and development of resistance. If combined, monitor for indinavir treatment failure Risk D: Consider therapy modification

Indium 111 Capromab Pendetide: Antiandrogens may diminish the diagnostic effect of Indium 111 Capromab Pendetide. Risk X: Avoid combination

Infigratinib: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Infigratinib. CYP3A4 Inducers (Strong) may decrease the serum concentration of Infigratinib. Risk X: Avoid combination

Irinotecan Products: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Irinotecan Products. Specifically, serum concentrations of SN-38 may be reduced. CYP3A4 Inducers (Strong) may decrease the serum concentration of Irinotecan Products. Management: Avoid administration of strong CYP3A4 inducers during irinotecan treatment, and substitute non-CYP3A4 inducing agents at least 2 weeks prior to irinotecan initiation, whenever possible. If combined, monitor for reduced irinotecan efficacy. Risk D: Consider therapy modification

Isavuconazonium Sulfate: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Isavuconazonium Sulfate. Specifically, CYP3A4 Inducers (Strong) may decrease isavuconazole serum concentrations. Risk X: Avoid combination

Isradipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Isradipine. Risk C: Monitor therapy

Istradefylline: CYP3A4 Inducers (Strong) may decrease the serum concentration of Istradefylline. Risk X: Avoid combination

Itraconazole: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Itraconazole. CYP3A4 Inducers (Strong) may decrease the serum concentration of Itraconazole. Risk X: Avoid combination

Ivabradine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ivabradine. Risk X: Avoid combination

Ivacaftor: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ivacaftor. Risk X: Avoid combination

Ivosidenib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ivosidenib. Risk X: Avoid combination

Ixabepilone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ixabepilone. Management: Avoid this combination whenever possible. If this combination must be used, a gradual increase in ixabepilone dose from 40 mg/m2 to 60 mg/m2 (given as a 4-hour infusion), as tolerated, should be considered. Risk D: Consider therapy modification

Ixazomib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ixazomib. Risk X: Avoid combination

Ketamine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ketamine. Risk C: Monitor therapy

Ketoconazole (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Ketoconazole (Systemic). Management: The use of ketoconazole concurrently with or within 2 weeks of a strong CYP3A4 inducer is not recommended. If such a combination cannot be avoided, monitor patients closely for evidence of diminished clinical response to ketoconazole. Risk D: Consider therapy modification

Lacidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lacidipine. Risk C: Monitor therapy

Lansoprazole: CYP2C19 Inducers (Strong) may decrease the serum concentration of Lansoprazole. Risk X: Avoid combination

Lapatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lapatinib. Management: If concomitant use cannot be avoided, titrate lapatinib gradually from 1,250 mg/day up to 4,500 mg/day (HER2 positive metastatic breast cancer) or 1,500 mg/day up to 5,500 mg/day (hormone receptor/HER2 positive breast cancer) as tolerated. Risk D: Consider therapy modification

Larotrectinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Larotrectinib. Management: Avoid use of strong CYP3A4 inducers with larotrectinib. If this combination cannot be avoided, double the larotrectinib dose. Reduced to previous dose after stopping the inducer after a period of 3 to 5 times the inducer's half-life. Risk D: Consider therapy modification

Ledipasvir: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Ledipasvir. Risk X: Avoid combination

Lefamulin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lefamulin. Management: Avoid concomitant use of lefamulin with strong CYP3A4 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lefamulin: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Lefamulin. Management: Avoid concomitant use of lefamulin with P-glycoprotein/ABCB1 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lefamulin (Intravenous): CYP3A4 Inducers (Strong) may decrease the serum concentration of Lefamulin (Intravenous). Management: Avoid concomitant use of lefamulin intravenous infusion with strong CYP3A4 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lefamulin (Intravenous): P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Lefamulin (Intravenous). Management: Avoid concomitant use of lefamulin (intravenous) with P-glycoprotein/ABCB1 inducers unless the benefits outweigh the risks. Risk D: Consider therapy modification

Lemborexant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lemborexant. Risk X: Avoid combination

Lenacapavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lenacapavir. Risk X: Avoid combination

Leniolisib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Leniolisib. Risk X: Avoid combination

Lercanidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lercanidipine. Risk C: Monitor therapy

Letermovir: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Letermovir. Risk X: Avoid combination

Leuprolide and Norethindrone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Leuprolide and Norethindrone. Specifically, norethindrone concentrations may be decreased. Risk C: Monitor therapy

Levamlodipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Levamlodipine. Risk C: Monitor therapy

Levoketoconazole: CYP3A4 Inducers (Strong) may decrease the serum concentration of Levoketoconazole. Risk X: Avoid combination

Levomethadone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Levomethadone. Risk C: Monitor therapy

Levonorgestrel (IUD): CYP3A4 Inducers (Strong) may diminish the therapeutic effect of Levonorgestrel (IUD). CYP3A4 Inducers (Strong) may decrease the serum concentration of Levonorgestrel (IUD). Risk C: Monitor therapy

Lidocaine (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Lidocaine (Systemic). Risk C: Monitor therapy

LinaGLIPtin: CYP3A4 Inducers (Strong) may decrease the serum concentration of LinaGLIPtin. Management: Strongly consider using an alternative to any strong CYP3A4 inducer in patients who are being treated with linagliptin. If this combination is used, monitor patients closely for evidence of reduced linagliptin effectiveness. Risk D: Consider therapy modification

LinaGLIPtin: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of LinaGLIPtin. Management: Strongly consider using an alternative to any P-glycoprotein inducer in patients who are being treated with linagliptin. If this combination is used, monitor patients closely for evidence of reduced linagliptin effectiveness. Risk D: Consider therapy modification

Lonafarnib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lonafarnib. Risk X: Avoid combination

Lopinavir: Apalutamide may decrease the serum concentration of Lopinavir. Risk X: Avoid combination

Lorlatinib: CYP3A4 Inducers (Strong) may enhance the hepatotoxic effect of Lorlatinib. CYP3A4 Inducers (Strong) may decrease the serum concentration of Lorlatinib. Risk X: Avoid combination

Lovastatin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lovastatin. Risk C: Monitor therapy

Lumacaftor and Ivacaftor: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lumacaftor and Ivacaftor. Specifically, the serum concentration of ivacaftor may be decreased. Risk X: Avoid combination

Lumateperone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lumateperone. Risk X: Avoid combination

Lurasidone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lurasidone. Risk X: Avoid combination

Lurbinectedin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Lurbinectedin. Risk X: Avoid combination

Macimorelin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Macimorelin. Risk X: Avoid combination

Macitentan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Macitentan. Risk X: Avoid combination

Manidipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Manidipine. Management: Consider avoiding concomitant use of manidipine and strong CYP3A4 inducers. If combined, monitor closely for decreased manidipine effects and loss of efficacy. Increased manidipine doses may be required. Risk D: Consider therapy modification

Maraviroc: CYP3A4 Inducers (Strong) may decrease the serum concentration of Maraviroc. Management: Increase maraviroc adult dose to 600 mg twice/day, but only if not receiving a strong CYP3A4 inhibitor. Not recommended for pediatric patients not also receiving a strong CYP3A4 inhibitor. Contraindicated in patients with CrCl less than 30 mL/min. Risk D: Consider therapy modification

Maribavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Maribavir. Risk X: Avoid combination

Mavacamten: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mavacamten. Risk X: Avoid combination

Mefloquine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mefloquine. Risk C: Monitor therapy

Meperidine: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Meperidine. Specifically, concentrations of normeperidine, the CNS stimulating metabolite, may be increased. CYP3A4 Inducers (Strong) may decrease the serum concentration of Meperidine. Risk C: Monitor therapy

Methadone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Methadone. Risk C: Monitor therapy

Methylergonovine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Methylergonovine. Risk C: Monitor therapy

MethylPREDNISolone: CYP3A4 Inducers (Strong) may decrease the serum concentration of MethylPREDNISolone. Management: Consider methylprednisolone dose increases in patients receiving strong CYP3A4 inducers and monitor closely for reduced steroid efficacy. Risk D: Consider therapy modification

Mianserin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mianserin. Risk C: Monitor therapy

Midazolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Midazolam. Risk C: Monitor therapy

Midostaurin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Midostaurin. Risk X: Avoid combination

MiFEPRIStone: CYP3A4 Inducers (Strong) may decrease the serum concentration of MiFEPRIStone. Management: Avoid combined use in patients treated for Cushing's disease. When used for pregnancy termination, mifepristone efficacy may be reduced and an alternative pregnancy termination procedure may be warranted. Ensure a follow-up assessment after combined use. Risk D: Consider therapy modification

Mirabegron: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mirabegron. Risk C: Monitor therapy

Mirodenafil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mirodenafil. Management: Consider avoiding the concomitant use of mirodenafil and strong CYP3A4 inducers. If combined, monitor for decreased mirodenafil effects. Mirodenafil dose increases may be required to achieve desired effects. Risk D: Consider therapy modification

Mirtazapine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mirtazapine. Risk C: Monitor therapy

Mitapivat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Mitapivat. Risk X: Avoid combination

Mobocertinib: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Mobocertinib. CYP3A4 Inducers (Strong) may decrease the serum concentration of Mobocertinib. Risk X: Avoid combination

Naldemedine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Naldemedine. Risk X: Avoid combination

Naloxegol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Naloxegol. Risk X: Avoid combination

Nateglinide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nateglinide. Risk C: Monitor therapy

Nelfinavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nelfinavir. Risk C: Monitor therapy

Neratinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Neratinib. Risk X: Avoid combination

Netupitant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Netupitant. Risk X: Avoid combination

Nevirapine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nevirapine. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced nevirapine efficacy. Risk D: Consider therapy modification

NiCARdipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of NiCARdipine. Risk C: Monitor therapy

NIFEdipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of NIFEdipine. Management: Avoid coadministration of nifedipine with strong CYP3A4 inducers when possible and if combined, monitor patients closely for clinical signs of diminished nifedipine response. Risk D: Consider therapy modification

Nilotinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nilotinib. Risk X: Avoid combination

Nilvadipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nilvadipine. Risk C: Monitor therapy

NiMODipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of NiMODipine. Risk X: Avoid combination

Nintedanib: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Nintedanib. Risk X: Avoid combination

Niraparib: Apalutamide may enhance the adverse/toxic effect of Niraparib. Apalutamide may decrease the serum concentration of Niraparib. Management: Consider alternatives to this combination when possible. If combined, monitor for decreased niraparib concentrations and efficacy, as well as for increased niraparib toxicities. Risk D: Consider therapy modification

Nirmatrelvir and Ritonavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nirmatrelvir and Ritonavir. Risk X: Avoid combination

Nirogacestat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nirogacestat. Risk X: Avoid combination

Nisoldipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nisoldipine. Risk X: Avoid combination

Nitrazepam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nitrazepam. Risk C: Monitor therapy

Nitrendipine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Nitrendipine. Risk C: Monitor therapy

Olaparib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Olaparib. Risk X: Avoid combination

Oliceridine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Oliceridine. Risk C: Monitor therapy

Olmutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Olmutinib. Risk C: Monitor therapy

Olutasidenib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Olutasidenib. Risk X: Avoid combination

Omaveloxolone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Omaveloxolone. Risk X: Avoid combination

Omeprazole: CYP2C19 Inducers (Strong) may decrease the serum concentration of Omeprazole. Risk X: Avoid combination

Ondansetron: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ondansetron. Risk C: Monitor therapy

Orelabrutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Orelabrutinib. Risk X: Avoid combination

Osilodrostat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Osilodrostat. Risk C: Monitor therapy

Osimertinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Osimertinib. Management: Avoid coadministration of osimertinib and strong CYP3A4 inducers if possible. If coadministration is unavoidable, increase osimertinib to 160 mg daily. Reduce osimertinib to 80 mg daily 3 weeks after discontinuation of the strong CYP3A4 inducer. Risk D: Consider therapy modification

Ospemifene: Apalutamide may decrease the serum concentration of Ospemifene. Risk C: Monitor therapy

OXcarbazepine: CYP3A4 Inducers (Strong) may decrease the serum concentration of OXcarbazepine. Specifically, the concentrations of the 10-monohydroxy active metabolite of oxcarbazepine may be decreased. Risk C: Monitor therapy

OxyCODONE: CYP3A4 Inducers (Strong) may decrease the serum concentration of OxyCODONE. Risk C: Monitor therapy

PACLitaxel (Conventional): CYP3A4 Inducers (Strong) may decrease the serum concentration of PACLitaxel (Conventional). Risk C: Monitor therapy

PACLitaxel (Protein Bound): CYP3A4 Inducers (Strong) may decrease the serum concentration of PACLitaxel (Protein Bound). Risk C: Monitor therapy

Pacritinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pacritinib. Risk X: Avoid combination

Palbociclib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Palbociclib. Risk X: Avoid combination

Paliperidone: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Paliperidone. Management: Monitor for reduced paliperidone effects when combined with strong inducers of both CYP3A4 and P-gp. Avoid use of these inducers with extended-release injectable paliperidone and instead manage patients with paliperidone extended-release tablets. Risk C: Monitor therapy

Palovarotene: CYP3A4 Inducers (Strong) may decrease the serum concentration of Palovarotene. Risk X: Avoid combination

Panobinostat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Panobinostat. Risk X: Avoid combination

PAZOPanib: CYP3A4 Inducers (Strong) may decrease the serum concentration of PAZOPanib. Risk X: Avoid combination

Pemigatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pemigatinib. Risk X: Avoid combination

Perampanel: CYP3A4 Inducers (Strong) may decrease the serum concentration of Perampanel. Management: Increase perampanel starting dose to 4 mg/day if used with strong CYP3A4 inducers. Increase perampanel dose by 2 mg/day no more than once weekly based on response and tolerability. Dose adjustments may be needed if the inducer is discontinued. Risk D: Consider therapy modification

Pexidartinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pexidartinib. Risk X: Avoid combination

Piflufolastat F18: Antiandrogens may diminish the diagnostic effect of Piflufolastat F18. Management: Therapies targeting the androgen pathway may result in changes in the uptake of piflufolastat F18 in prostate cancer. The impact of these therapies on the performance of piflufolastat F18 is unknown; consider use of alternative agents. Risk D: Consider therapy modification

Pimavanserin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pimavanserin. Risk X: Avoid combination

Piperaquine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Piperaquine. Risk X: Avoid combination

Pirtobrutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pirtobrutinib. Risk X: Avoid combination

Pitolisant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pitolisant. Management: If on a stable pitolisant dose of 8.9 mg or 17.8 mg/day and starting a strong CYP3A4 inducer, double the pitolisant dose over 7 days (ie, to either 17.8 mg/day or 35.6 mg/day, respectively). Reduce pitolisant dose by 50% when the inducer is discontinued. Risk D: Consider therapy modification

Polatuzumab Vedotin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Polatuzumab Vedotin. Exposure to unconjugated MMAE, the cytotoxic small molecule component of polatuzumab vedotin, may be decreased. Risk C: Monitor therapy

PONATinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of PONATinib. Management: Avoid coadministration of ponatinib with strong CYP3A4 inducers unless the potential benefit of concomitant treatment outweighs the risk of reduced ponatinib exposure. Monitor patients for reduced ponatinib efficacy if combined. Risk D: Consider therapy modification

Pralsetinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pralsetinib. Management: Avoid concomitant use of pralsetinib with strong CYP3A4 inducers when possible. If combined, increase the starting dose of pralsetinib to double the current pralsetinib dosage starting on day 7 of coadministration. Risk D: Consider therapy modification

Praziquantel: CYP3A4 Inducers (Strong) may decrease the serum concentration of Praziquantel. Risk X: Avoid combination

PrednisoLONE (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of PrednisoLONE (Systemic). Risk C: Monitor therapy

PredniSONE: CYP3A4 Inducers (Strong) may decrease the serum concentration of PredniSONE. Risk C: Monitor therapy

Pretomanid: CYP3A4 Inducers (Strong) may decrease the serum concentration of Pretomanid. Risk X: Avoid combination

Propafenone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Propafenone. Risk C: Monitor therapy

QUEtiapine: CYP3A4 Inducers (Strong) may decrease the serum concentration of QUEtiapine. Management: An increase in quetiapine dose (as much as 5 times the regular dose) may be required to maintain therapeutic benefit. Reduce the quetiapine dose back to the previous/regular dose within 7 to 14 days of discontinuing the inducer. Risk D: Consider therapy modification

QuiNIDine: CYP3A4 Inducers (Strong) may decrease the serum concentration of QuiNIDine. Risk C: Monitor therapy

QuiNINE: CYP3A4 Inducers (Strong) may decrease the serum concentration of QuiNINE. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced quinine efficacy and treatment failure. Risk D: Consider therapy modification

Quizartinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Quizartinib. Risk X: Avoid combination

Radotinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Radotinib. Management: Consider alternatives to this combination when possible as the risk of radotinib treatment failure may be increased. Risk D: Consider therapy modification

Ramelteon: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ramelteon. Risk C: Monitor therapy

Ranolazine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ranolazine. Risk X: Avoid combination

Reboxetine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Reboxetine. Risk C: Monitor therapy

Regorafenib: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Regorafenib. CYP3A4 Inducers (Strong) may decrease the serum concentration of Regorafenib. Risk X: Avoid combination

Relugolix: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Relugolix. Management: Avoid use of relugolix with drugs that are both strong CYP3A4 and P-glycoprotein (P-gp) inducer. If combined, increase the dose of relugolix to 240 mg once daily. Reduce back to 120 mg daily once the combined inducer is discontinued. Risk D: Consider therapy modification

Relugolix, Estradiol, and Norethindrone: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Relugolix, Estradiol, and Norethindrone. Risk X: Avoid combination

Repaglinide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Repaglinide. Risk C: Monitor therapy

Repotrectinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Repotrectinib. Risk X: Avoid combination

Ribociclib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ribociclib. Risk X: Avoid combination

Rifabutin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Rifabutin. Risk C: Monitor therapy

Rilpivirine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Rilpivirine. Management: Consider alternatives to this combination whenever possible. If combined, monitor closely for reduced rilpivirine efficacy (eg, loss of virologic response or resistance). Risk X: Avoid combination

Rimegepant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Rimegepant. Risk X: Avoid combination

Riociguat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Riociguat. Risk C: Monitor therapy

Ripretinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ripretinib. Risk X: Avoid combination

RisperiDONE: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of RisperiDONE. CYP3A4 Inducers (Strong) may decrease the serum concentration of RisperiDONE. Management: Careful monitoring for reduced risperidone efficacy and possible dose adjustment are recommended when combined with strong CYP3A4 inducers. See full interaction monograph for details. Risk D: Consider therapy modification

Ritlecitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ritlecitinib. Risk X: Avoid combination

Ritonavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ritonavir. Risk X: Avoid combination

Rivaroxaban: Inducers of CYP3A4 (Strong) and P-glycoprotein may decrease the serum concentration of Rivaroxaban. Risk X: Avoid combination

Roflumilast (Systemic): CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Roflumilast (Systemic). CYP3A4 Inducers (Strong) may decrease the serum concentration of Roflumilast (Systemic). Risk X: Avoid combination

Rolapitant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Rolapitant. Risk X: Avoid combination

RomiDEPsin: CYP3A4 Inducers (Strong) may decrease the serum concentration of RomiDEPsin. Risk X: Avoid combination

Rosuvastatin: Apalutamide may decrease the serum concentration of Rosuvastatin. Risk C: Monitor therapy

Ruxolitinib (Systemic): CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Ruxolitinib (Systemic). CYP3A4 Inducers (Strong) may decrease the serum concentration of Ruxolitinib (Systemic). Risk C: Monitor therapy

Samidorphan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Samidorphan. Risk X: Avoid combination

Saquinavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Saquinavir. Management: Consider alternatives to strong CYP3A4 inducers in patients treated with saquinavir. If combined, monitor closely for signs of decreased saquinavir concentrations and effects. Risk D: Consider therapy modification

SAXagliptin: CYP3A4 Inducers (Strong) may decrease the serum concentration of SAXagliptin. Risk C: Monitor therapy

Selpercatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Selpercatinib. Risk X: Avoid combination

Selumetinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Selumetinib. Risk X: Avoid combination

Sertindole: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sertindole. Risk C: Monitor therapy

Sertraline: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sertraline. Risk C: Monitor therapy

Sildenafil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sildenafil. Risk C: Monitor therapy

Simeprevir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Simeprevir. Risk X: Avoid combination

Simvastatin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Simvastatin. Risk C: Monitor therapy

Sirolimus (Conventional): CYP3A4 Inducers (Strong) may decrease the serum concentration of Sirolimus (Conventional). Management: Avoid concomitant use of strong CYP3A4 inducers and sirolimus if possible. If combined, monitor for reduced serum sirolimus concentrations. Sirolimus dose increases will likely be necessary to prevent subtherapeutic sirolimus levels. Risk D: Consider therapy modification

Sirolimus (Protein Bound): CYP3A4 Inducers (Strong) may decrease the serum concentration of Sirolimus (Protein Bound). Risk X: Avoid combination

Sofosbuvir: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Sofosbuvir. Risk X: Avoid combination

Solifenacin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Solifenacin. Risk C: Monitor therapy

Solriamfetol: May enhance the hypertensive effect of Hypertension-Associated Agents. Risk C: Monitor therapy

Sonidegib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sonidegib. Risk X: Avoid combination

SORAfenib: CYP3A4 Inducers (Strong) may decrease the serum concentration of SORAfenib. Risk X: Avoid combination

Sotorasib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sotorasib. Risk X: Avoid combination

Sparsentan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Sparsentan. Risk X: Avoid combination

Stiripentol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Stiripentol. Management: Avoid concomitant use of stiripentol and strong CYP3A4 inducers when possible. If combined, monitor for reduced stiripentol efficacy and increase the stiripentol dose as needed. Risk D: Consider therapy modification

SUFentanil: CYP3A4 Inducers (Strong) may decrease the serum concentration of SUFentanil. Management: If a strong CYP3A4 inducer is initiated in a patient on sufentanil, consider a sufentanil dose increase and monitor for decreased sufentanil effects and opioid withdrawal symptoms. Risk D: Consider therapy modification

SUNItinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of SUNItinib. Management: Avoid when possible. If combined, increase sunitinib dose to a max of 87.5 mg daily when treating GIST or RCC. Increase sunitinib dose to a max of 62.5 mg daily when treating PNET. Monitor patients for both reduced efficacy and increased toxicities. Risk D: Consider therapy modification

Suvorexant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Suvorexant. Risk C: Monitor therapy

Tacrolimus (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Tacrolimus (Systemic). Management: Monitor for decreased tacrolimus concentrations and effects when combined with strong CYP3A4 inducers. Tacrolimus dose increases will likely be needed during concomitant use. Risk D: Consider therapy modification

Tadalafil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tadalafil. Management: Erectile dysfunction or benign prostatic hypertrophy: monitor for decreased effectiveness - no standard dose adjustment is recommended. Avoid use of tadalafil for pulmonary arterial hypertension in patients receiving a strong CYP3A4 inducer. Risk D: Consider therapy modification

Tamoxifen: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Tamoxifen. CYP3A4 Inducers (Strong) may decrease the serum concentration of Tamoxifen. Risk X: Avoid combination

Tasimelteon: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tasimelteon. Risk X: Avoid combination

Tazemetostat: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tazemetostat. Risk X: Avoid combination

Temsirolimus: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Temsirolimus. Specifically, concentrations of sirolimus may be decreased. CYP3A4 Inducers (Strong) may decrease the serum concentration of Temsirolimus. Management: Avoid concomitant use of temsirolimus and strong CYP3A4 inducers. If coadministration is unavoidable, increase temsirolimus dose to 50 mg per week. Resume previous temsirolimus dose after discontinuation of the strong CYP3A4 inducer. Risk D: Consider therapy modification

Teniposide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Teniposide. Risk C: Monitor therapy

Tenofovir Alafenamide: P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of Tenofovir Alafenamide. Management: Consider alternatives to the use of P-gp inducers with tenofovir alafenamide. If combined, monitor for reduced tenofovir alafenamide concentrations and efficacy, and for the development of resistance. Risk D: Consider therapy modification

Tetrahydrocannabinol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tetrahydrocannabinol. Risk C: Monitor therapy

Tetrahydrocannabinol and Cannabidiol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tetrahydrocannabinol and Cannabidiol. Management: Avoid use of the tetrahydrocannabinol/cannabidiol oromucosal spray and strong CYP3A4 inducers when possible. If combined use is necessary, careful titration is recommended, notably within the two weeks following discontinuation of the inducer. Risk D: Consider therapy modification

Tezacaftor and Ivacaftor: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tezacaftor and Ivacaftor. Risk X: Avoid combination

Thiotepa: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Thiotepa. CYP3A4 Inducers (Strong) may decrease the serum concentration of Thiotepa. Management: Thiotepa prescribing information recommends avoiding concomitant use of thiotepa and strong CYP3A4 inducers. If concomitant use is unavoidable, monitor for adverse effects. Risk D: Consider therapy modification

Thyroid Products: Apalutamide may diminish the therapeutic effect of Thyroid Products. Risk C: Monitor therapy

TiaGABine: CYP3A4 Inducers (Strong) may decrease the serum concentration of TiaGABine. Risk C: Monitor therapy

Ticagrelor: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Ticagrelor. CYP3A4 Inducers (Strong) may decrease the serum concentration of Ticagrelor. Risk X: Avoid combination

Tipranavir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tipranavir. Risk C: Monitor therapy

Tivozanib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tivozanib. Risk X: Avoid combination

Tofacitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tofacitinib. Risk X: Avoid combination

Tolvaptan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tolvaptan. Risk X: Avoid combination

Toremifene: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Toremifene. CYP3A4 Inducers (Strong) may decrease the serum concentration of Toremifene. Risk X: Avoid combination

Trabectedin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Trabectedin. Risk X: Avoid combination

TraMADol: CYP3A4 Inducers (Strong) may decrease the serum concentration of TraMADol. Risk C: Monitor therapy

TraZODone: CYP3A4 Inducers (Strong) may decrease the serum concentration of TraZODone. Management: Consider increasing the trazodone dose during coadministration with strong CYP3A4 inducers. Risk D: Consider therapy modification

Triamcinolone (Systemic): CYP3A4 Inducers (Strong) may decrease the serum concentration of Triamcinolone (Systemic). Risk C: Monitor therapy

Triazolam: CYP3A4 Inducers (Strong) may decrease the serum concentration of Triazolam. Management: Consider alternatives to this combination when possible. If combined, monitor for reduced triazolam efficacy. Substantial triazolam dose increases will likely be required. Risk D: Consider therapy modification

Tropisetron: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tropisetron. Risk C: Monitor therapy

Tucatinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Tucatinib. Risk X: Avoid combination

Ubrogepant: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ubrogepant. Risk X: Avoid combination

Udenafil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Udenafil. Risk C: Monitor therapy

Ulipristal: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ulipristal. Risk X: Avoid combination

Upadacitinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Upadacitinib. Risk X: Avoid combination

Valbenazine: CYP3A4 Inducers (Strong) may decrease serum concentrations of the active metabolite(s) of Valbenazine. CYP3A4 Inducers (Strong) may decrease the serum concentration of Valbenazine. Risk X: Avoid combination

Vandetanib: CYP3A4 Inducers (Strong) may increase serum concentrations of the active metabolite(s) of Vandetanib. CYP3A4 Inducers (Strong) may decrease the serum concentration of Vandetanib. Risk X: Avoid combination

Velpatasvir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Velpatasvir. Risk X: Avoid combination

Vemurafenib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vemurafenib. Management: Avoid coadministration of vemurafenib and strong CYP3A4 inducers if possible. If coadministration is unavoidable, increase the vemurafenib dose by 240 mg as tolerated. Resume prior vemurafenib dose 2 weeks after discontinuation of strong CYP3A4 inducer. Risk D: Consider therapy modification

Venetoclax: CYP3A4 Inducers (Strong) may decrease the serum concentration of Venetoclax. Risk X: Avoid combination

Verapamil: CYP3A4 Inducers (Strong) may decrease the serum concentration of Verapamil. Management: Consider alternatives to this combination. If combined, monitor for reduced verapamil efficacy. Verapamil dose increases may be necessary. Risk D: Consider therapy modification

Vilazodone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vilazodone. Management: Consider increasing vilazodone dose by as much as 2-fold (do not exceed 80 mg/day), based on response, in patients receiving strong CYP3A4 inducers for > 14 days. Reduce to the original vilazodone dose over 1 to 2 weeks after inducer discontinuation. Risk D: Consider therapy modification

VinCRIStine: CYP3A4 Inducers (Strong) may decrease the serum concentration of VinCRIStine. Risk C: Monitor therapy

VinCRIStine (Liposomal): CYP3A4 Inducers (Strong) may decrease the serum concentration of VinCRIStine (Liposomal). Risk X: Avoid combination

VinCRIStine (Liposomal): P-glycoprotein/ABCB1 Inducers may decrease the serum concentration of VinCRIStine (Liposomal). Risk X: Avoid combination

Vinflunine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vinflunine. Risk X: Avoid combination

Vinorelbine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vinorelbine. Risk C: Monitor therapy

Vitamin K Antagonists (eg, warfarin): CYP2C9 Inducers (Weak) may decrease the serum concentration of Vitamin K Antagonists. Risk C: Monitor therapy

Voclosporin: CYP3A4 Inducers (Strong) may decrease the serum concentration of Voclosporin. Risk X: Avoid combination

Vonoprazan: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vonoprazan. Risk X: Avoid combination

Vorapaxar: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vorapaxar. Risk X: Avoid combination

Voriconazole: CYP3A4 Inducers (Strong) may decrease the serum concentration of Voriconazole. Management: Consider alternatives to this combination when possible. If combined, monitor for decreased voriconazole concentrations and effects. Risk D: Consider therapy modification

Vortioxetine: CYP3A4 Inducers (Strong) may decrease the serum concentration of Vortioxetine. Management: Consider increasing the vortioxetine dose to no more than 3 times the original dose when used with a strong drug metabolism inducer for more than 14 days. The vortioxetine dose should be returned to normal within 14 days of stopping the strong inducer. Risk D: Consider therapy modification

Voxelotor: CYP3A4 Inducers (Strong) may decrease the serum concentration of Voxelotor. Management: Avoid concomitant use of voxelotor and strong CYP3A4 inducers. If unavoidable, increase the voxelotor dose to 2,500 mg once daily. For children ages 4 to less than 12 years, weight-based dose adjustments are required. See full monograph for details. Risk D: Consider therapy modification

Voxilaprevir: CYP3A4 Inducers (Strong) may decrease the serum concentration of Voxilaprevir. Risk X: Avoid combination

Zaleplon: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zaleplon. Management: Consider the use of an alternative hypnotic that is not metabolized by CYP3A4 in patients receiving strong CYP3A4 inducers. If zaleplon is combined with a strong CYP3A4 inducer, monitor for decreased effectiveness of zaleplon. Risk D: Consider therapy modification

Zanubrutinib: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zanubrutinib. Risk X: Avoid combination

Zavegepant: OATP1B1/1B3 (SLCO1B1/1B3) Inducers may decrease the serum concentration of Zavegepant. Risk X: Avoid combination

Ziprasidone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Ziprasidone. Risk C: Monitor therapy

Zolpidem: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zolpidem. Risk C: Monitor therapy

Zonisamide: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zonisamide. Risk C: Monitor therapy

Zopiclone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zopiclone. Risk C: Monitor therapy

Zuclopenthixol: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zuclopenthixol. Risk C: Monitor therapy

Zuranolone: CYP3A4 Inducers (Strong) may decrease the serum concentration of Zuranolone. Risk X: Avoid combination

Reproductive Considerations

Patients with partners who could become pregnant should use effective contraception during therapy and for 3 months after the last apalutamide dose.

Pregnancy Considerations

Based on the mechanism of action and data from animal reproduction studies, in utero exposure to apalutamide may cause fetal harm and potential fetal loss.

Breastfeeding Considerations

It is not known if apalutamide is present in breast milk.

Monitoring Parameters

Monitor thyroid function (eg, thyroid-stimulating hormone [TSH]) as clinically necessary (TSH was monitored at baseline and every 4 months in studies). Monitor for signs/symptoms of cardiovascular events (including ischemic heart disease), cerebrovascular events, seizure, and dermatologic toxicity. Monitor for signs/symptoms of severe cutaneous adverse reactions (eg, prodrome of fever, flu-like symptoms, mucosal lesions, progression skin rash, or lymphadenopathy). Assess for fall and fracture risk. Monitor adherence.

Cardiovascular monitoring for patients with prostate cancer: Comprehensive assessment prior to treatment including a history and physical examination, screening for cardiovascular disease risk factors such as hypertension, diabetes, dyslipidemia, obesity, and smoking; baseline and serial ECGs are recommended in patients at risk of QTc prolongation during androgen deprivation therapy (ADT); estimate 10-year cardiovascular disease risk in patients without cardiovascular disease at baseline; assess cardiovascular risk annually during ADT (ASCO [Armenian 2017]; ESC [Lyon 2022]).

Mechanism of Action

Apalutamide is a nonsteroidal androgen receptor inhibitor; apalutamide binds directly to the androgen receptor ligand-binding domain to prevent androgen-receptor translocation, DNA binding, and receptor-mediated transcription (Smith 2018). Androgen receptor inhibition results in decreased proliferation of tumor cells and increased apoptosis, leading to a decrease in tumor volume.

Pharmacokinetics (Adult Data Unless Noted)

Distribution: ~276 L.

Protein binding: Apalutamide: 96%; N-desmethyl apalutamide: 95%; to plasma proteins.

Metabolism: Hepatic; primarily via CYP2C8 and CYP3A4 to form the active metabolite N-desmethyl apalutamide.

Bioavailability: ~100%.

Half-life elimination: ~3 days.

Time to peak: 2 hours (range: 1 to 5 hours).

Excretion: Urine (65%; 1.2% as apalutamide and 2.7% as N-desmethyl apalutamide); Feces (24%; 1.5% as apalutamide and 2% as N-desmethyl apalutamide).

Clearance: 1.3 L/hour (after single dose); 2 L/hour (steady state).

Brand Names: International
International Brand Names by Country
For country code abbreviations (show table)

  • (AE) United Arab Emirates: Erleada;
  • (AR) Argentina: Erleada;
  • (AT) Austria: Erleada;
  • (AU) Australia: Erlyand;
  • (BD) Bangladesh: Apalunix | Prostaxen;
  • (BE) Belgium: Erleada;
  • (BG) Bulgaria: Erleada;
  • (BR) Brazil: Erleada;
  • (CH) Switzerland: Erleada;
  • (CL) Chile: Erleada;
  • (CO) Colombia: Erleada;
  • (CZ) Czech Republic: Erleada;
  • (DE) Germany: Erleada;
  • (EC) Ecuador: Erleada;
  • (EE) Estonia: Erleada;
  • (EG) Egypt: Erleada;
  • (ES) Spain: Erleada;
  • (FI) Finland: Erleada;
  • (FR) France: Erleada;
  • (GB) United Kingdom: Erleada;
  • (GR) Greece: Erleada;
  • (HK) Hong Kong: Erleada;
  • (HU) Hungary: Erleada;
  • (IE) Ireland: Erleada;
  • (IN) India: Apnat;
  • (IT) Italy: Erleada;
  • (JP) Japan: Erleada;
  • (KW) Kuwait: Erleada;
  • (LB) Lebanon: Erleada;
  • (LT) Lithuania: Erleada;
  • (LU) Luxembourg: Erleada;
  • (LV) Latvia: Erleada;
  • (MA) Morocco: Erleada;
  • (MX) Mexico: Erleada;
  • (MY) Malaysia: Erleada;
  • (NL) Netherlands: Erleada;
  • (NO) Norway: Erleada;
  • (PH) Philippines: Erleada;
  • (PL) Poland: Erleada;
  • (PR) Puerto Rico: Erleada;
  • (PT) Portugal: Erleada;
  • (QA) Qatar: Erleada;
  • (RO) Romania: Erleada;
  • (RU) Russian Federation: Erleada;
  • (SE) Sweden: Erleada;
  • (SG) Singapore: Erleada;
  • (SI) Slovenia: Erleada;
  • (SK) Slovakia: Erleada;
  • (TR) Turkey: Erleada;
  • (TW) Taiwan: Erleada;
  • (UY) Uruguay: Erleada;
  • (ZA) South Africa: Erleada
  1. <800> Hazardous Drugs—Handling in Healthcare Settings. United States Pharmacopeia and National Formulary (USP 43-NF 38). Rockville, MD: United States Pharmacopeia Convention; 2020:74-92.
  2. Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893-911. doi:10.1200/JCO.2016.70.5400 [PubMed 27918725]
  3. Chi KN, Agarwal N, Biartell A, et al; TITAN Investigators. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381(1):13-24. doi: 10.1056/NEJMoa1903307. [PubMed 31150574]
  4. Erleada (apalutamide) [prescribing information]. Horsham, PA: Janssen Products LP; February 2023.
  5. Erleada (apalutamide) [product monograph]. Toronto, Ontario, Canada: Janssen Inc; March 2023.
  6. Levine GN, D'Amico AV, Berger P, et al; American Heart Association Council on Clinical Cardiology and Council on Epidemiology and Prevention, the American Cancer Society, and the American Urological Association. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation. 2010;121(6):833-840. doi: 10.1161/CIRCULATIONAHA.109.192695. [PubMed 20124128]
  7. Lyon AR, López-Fernández T, Couch LS, et al; ESC Scientific Document Group. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229-4361. doi:10.1093/eurheartj/ehac244 [PubMed 36017568]
  8. Smith MR, Saad F, Chowdhury S, et al; SPARTAN Investigators. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med. 2018;378(15):1408-1418. [PubMed 29420164]
  9. US Department of Health and Human Services; Centers for Disease Control and Prevention; National Institute for Occupational Safety and Health. NIOSH list of antineoplastic and other hazardous drugs in healthcare settings 2016. https://www.cdc.gov/niosh/docs/2016-161/default.html. Updated September 2016. Accessed February 16, 2018.
Topic 116885 Version 186.0

آیا می خواهید مدیلیب را به صفحه اصلی خود اضافه کنید؟